Page 10 - 《水资源与水工程学报》2023年第4期
P. 10
6 & ' ( ) & * + , - 2023 $
gressiveconditionalheteroscedasticitymodellingofhydrolog fluctuationsinhydroclimaticvariables[J].Theoretical
ictimeseries[J].HydrologicalProcesses,2013,27(22), andAppliedClimatology,2019,138:591-603.
3174-3191. [19]KHALEKMA,AHASANM N,ALIM A.Groundwater
[8]MODARRESR,OUARDATBM J.Modelingrainfall- tablevolatilityforecastingusinghybridwavelet-GARCH
runoffrelationshipusingmultivariateGARCH model[J]. modelinthenorthwestBangladesh [J].InternationalJour
JournalofHydrology ,2013,499:1-18. nalofStatisticalSciences ,2019,17:39-60.
[9]MODARRESR,OUARDATBM J.Modellingheterosce [20]LIU Qi,ZHANG Guanglan,ALIS,etal.SPIbased
dasticityofstreamflowtimeseries [J].HydrologicalSciences droughtsimulationandpredictionusingARMA-GARCH
Journal,2013,58(1):54-64. model [J].AppliedMathematicsandComputation,2019,
[10]MODARRESR,OUARDATBMJ.Modelingtherelation 355:96-107.
shipbetweenclimateoscillationsanddroughtbyamultiva [21]PANDEY PK,TRIPURA H,PANDEY V.Improving
riateGARCH model [J]. WaterResourcesResearch, predictionaccuracyofrainfalltimeseriesbyhybridSARI
2014,50(1):601-618. MA-GARCH modeling [J]. NaturalResourcesRe
[11]MODARRESR,OUARDATBMJ.Ageneralizedcondi search ,2019,28:1125-1138.
tionalheteroscedasticmodelfortemperaturedownscaling [22]×ØÙ, X ¨, 0©D, . 'xvwj=k·1^@
[J].ClimateDynamics,2014,43:2629-2649. AâfqrB/¬[J]. W#NOUK¾ª,2009,
[12]FATHIANF,FAKHERT-FARDA,MODARRESR,et 29(11):19-30.
al.Regionalscalerainfall-runoffmodelingusingVARX- [23]×ØÙ, X ¨, ¥¦§, . 'x ARMA-GARCHqr
MGARCH approach[J].StochasticEnvironmentalRe ^@AîOêÂ=l·1[J].¢!%&H«%&,
searchandRiskAssessment,2018,32:999-1016. 2012,42(9):1069-1080.
[13]ROMILLYP.Timeseriesmodelingofglobalmeantem [24]øùú, ¬ , ®¯°, . ûüýþÿ'Z^ GARCH
peratureformanagerialdecisionmaking[J].Journalof [qrqKºû[J].FNO&c,2015,31(7):
EnvironmentalManagement ,2005,76(1):61-70. 131-136.
[14]CHENChangshian,LIUChinhui,SUHuichen.Anonlin [25]×$%, ±A$, ²³, . 'x(·1^ ARMA-
eartimeseriesanalysisusingtwostagegeneticalgorithms GARCHqr£@[c¢^¬[J]. E@´µ,2011
forsteamflow forecasting[J].HydrologicalProcesses, (5):52-56.
2008,22:3697-3711. [26]WANGHuimin,SONGSongbai,ZHANGGengxi,etal.
[15]YUSOFF,KANEIL,YUSOPZ.HybridofARIMA- Stochasticvolatilitymodelingofdailystreamflowtimese
GARCHmodelinginrainfalltimeseries [J].JournalTe ries[J].WaterResourcesResearch,2022,59(1):
knologi ,2013,63(2):27-34. e2021WR031662.
[16]SZOLGAYOV?EP,DANACOVAM,KOMORNIKOVA [27]WANGHuimin,SONGSongbai,ZHANGGengxi,etal.
M,etal.Hybridforecastingofdailyriverdischargescon Predictingdaily streamflow with a novelmultiregime
sideringautoregressiveheteroscedasticity [J].SlovakJour switchingARIMA-MS-GARCH model [J].Journalof
nalofCivilEngineering ,2017,25(2):39-48. Hydrology :RegionalStudies,2023,47:101374.
[17]LIUYan,WANGBinbin,ZHANHongbin,etal.Simula [28]/00, ¶ Y, · ¸. @ÆdZ-.Ì¢^j=kl
tionofnonstationaryspringdischargeusingtimeseries ·1———Î0·L?«[J]. ¹ºI&&c ( &
models [J].WaterResourcesManagement,2017,31: »),2014,60(1):73-78.
4875-4890. [29]\34, ¼½¾, ¿(. IÂ1Þ2#Ìqr¢^j=
[18]FARSHADF.DynamicmemoryofUrmiaLakewaterlevel k[J]. 8·%&PPc,2002,19(1):42-44.