Page 10 - 《水资源与水工程学报》2023年第4期
P. 10

6                        & ' ( ) & * + , -                 2023 $

                gressiveconditionalheteroscedasticitymodellingofhydrolog  fluctuationsinhydroclimaticvariables[J].Theoretical
                ictimeseries[J].HydrologicalProcesses,2013,27(22),  andAppliedClimatology,2019,138:591-603.
                3174-3191.                                     [19]KHALEKMA,AHASANM N,ALIM A.Groundwater
            [8]MODARRESR,OUARDATBM J.Modelingrainfall-             tablevolatilityforecastingusinghybridwavelet-GARCH
                runoffrelationshipusingmultivariateGARCH model[J].  modelinthenorthwestBangladesh [J].InternationalJour
                JournalofHydrology ,2013,499:1-18.                 nalofStatisticalSciences ,2019,17:39-60.
            [9]MODARRESR,OUARDATBM J.Modellingheterosce       [20]LIU Qi,ZHANG Guanglan,ALIS,etal.SPIbased
                dasticityofstreamflowtimeseries [J].HydrologicalSciences  droughtsimulationandpredictionusingARMA-GARCH
                Journal,2013,58(1):54-64.                          model [J].AppliedMathematicsandComputation,2019,
            [10]MODARRESR,OUARDATBMJ.Modelingtherelation          355:96-107.
                 shipbetweenclimateoscillationsanddroughtbyamultiva  [21]PANDEY PK,TRIPURA H,PANDEY V.Improving
                 riateGARCH model [J]. WaterResourcesResearch,     predictionaccuracyofrainfalltimeseriesbyhybridSARI
                 2014,50(1):601-618.                               MA-GARCH modeling [J]. NaturalResourcesRe
            [11]MODARRESR,OUARDATBMJ.Ageneralizedcondi            search ,2019,28:1125-1138.
                 tionalheteroscedasticmodelfortemperaturedownscaling  [22]×ØÙ, X ¨, 0©D, ‘. 'xvwj=k·1^@
                 [J].ClimateDynamics,2014,43:2629-2649.            AâfqrB/¬­[J]. W#NOUK¾ª,2009,
            [12]FATHIANF,FAKHERT-FARDA,MODARRESR,et                29(11):19-30.
                 al.Regionalscalerainfall-runoffmodelingusingVARX-  [23]×ØÙ, X ¨, ¥¦§, ‘. 'x ARMA-GARCHqr
                 MGARCH approach[J].StochasticEnvironmentalRe     ^@AîOêÂ=l·1[J].¢!%&H«%&,
                 searchandRiskAssessment,2018,32:999-1016.         2012,42(9):1069-1080.
            [13]ROMILLYP.Timeseriesmodelingofglobalmeantem    [24]øùú, ¬ ­, ®¯°, ‘. ûüýþÿ'Z^ GARCH
                 peratureformanagerialdecisionmaking[J].Journalof  [qrq™Kºû[J].F‘NO&c,2015,31(7):
                 EnvironmentalManagement ,2005,76(1):61-70.        131-136.
            [14]CHENChangshian,LIUChinhui,SUHuichen.Anonlin   [25]×$%, ±A$, ²³›, ‘. 'x(›·1^ ARMA-
                 eartimeseriesanalysisusingtwostagegeneticalgorithms  GARCHqr€£@[c¢^¬­[J]. E@´µ,2011
                 forsteamflow forecasting[J].HydrologicalProcesses,  (5):52-56.
                 2008,22:3697-3711.                            [26]WANGHuimin,SONGSongbai,ZHANGGengxi,etal.
            [15]YUSOFF,KANEIL,YUSOPZ.HybridofARIMA-                Stochasticvolatilitymodelingofdailystreamflowtimese
                 GARCHmodelinginrainfalltimeseries [J].JournalTe  ries[J].WaterResourcesResearch,2022,59(1):
                 knologi ,2013,63(2):27-34.                        e2021WR031662.
            [16]SZOLGAYOV?EP,DANACOVAM,KOMORNIKOVA             [27]WANGHuimin,SONGSongbai,ZHANGGengxi,etal.
                 M,etal.Hybridforecastingofdailyriverdischargescon  Predictingdaily streamflow with a novelmultiregime
                 sideringautoregressiveheteroscedasticity [J].SlovakJour  switchingARIMA-MS-GARCH model [J].Journalof
                 nalofCivilEngineering ,2017,25(2):39-48.          Hydrology :RegionalStudies,2023,47:101374.
            [17]LIUYan,WANGBinbin,ZHANHongbin,etal.Simula     [28]/00, ¶ Y, · ¸. @ÆdZ-‡.Ì¢^j=kl
                 tionofnonstationaryspringdischargeusingtimeseries  ·1———Î0·L€?«[J]. ¹ºI&&c ( &
                 models [J].WaterResourcesManagement,2017,31:      »),2014,60(1):73-78.
                 4875-4890.                                    [29]\34, ¼½¾, ¿(™. IÂ1Þ2”#Ìqr¢^j=
            [18]FARSHADF.DynamicmemoryofUrmiaLakewaterlevel       kƒ„[J]. 8·%&PPc,2002,19(1):42-44.
   5   6   7   8   9   10   11   12   13   14   15