• ▶ 2008-2024年被中国情报信息研究所评价中心评为“中国科技核心期刊”
  • ▶ 2019-2024年连续三届被中国科学院文献情报中心中国科学引文数据库CSCD(核心库)收录
  • ▶ 2021、2023年入编北京大学图书馆《中文核心期刊要目总览》
  • ▶ 2020-2024连续四年入选《科技期刊世界影响力指数(WJCI)报告》
张秀菊, 王柳林, 李秀平, 王灵生.基于BP神经网络的潇河流域水质预测水资源与水工程学报[J].,2021,32(5):19-26
基于BP神经网络的潇河流域水质预测
Water quality prediction of the Xiaohe River Basin based on BP neural network model
  
DOI:10.11705/j.issn.1672-643X.2021.05.03
中文关键词:  水质预测  BP神经网络  相关性系数  水质指标  潇河流域
英文关键词:water quality prediction  BP neural network  correlation coefficient  water quality index  the Xiaohe River Basin
基金项目:国家重点研发计划项目(2018YFC1508200); 山西省水利科技项目(XS2019004)
作者单位
张秀菊1, 王柳林1, 李秀平2, 王灵生2 (1.河海大学 水文水资源学院 江苏 南京210098 2.晋中市水利局 山西 晋中 030600) 
摘要点击次数: 1166
全文下载次数: 428
中文摘要:
      针对传统水质预测方法存在预测精度不理想以及对实测数据要求较高的问题,建立基于BP神经网络的水质预测模型,以掌握研究流域未来一定时段的水环境质量情况。模型以潇河流域6个水质监测断面2017年1月-2020年5月的重铬酸盐指数和高锰酸盐指数的浓度作为训练集,以2020年6月-2020年8月的水质数据作为验证集进行模拟与预测。结果表明:BP神经网络模型经训练后,模拟的各断面水质指标平均相对误差均小于7%,相关性系数均超过了0.98,验证集的水质指标平均相对误差均小于18%。构建的BP神经网络模型预测精度较高,可以用于潇河流域的水质预测。
英文摘要:
      Conventional water quality prediction methods have the disadvantages of poor prediction accuracy and high requirements for monitored data, in order to have a better grasp of the future water environment quality of the Xiaohe River Basin over a certain period of time, a BP neural network model was established to predict the concentration of water quality indices. The indices of CODCr and CODMnof six water quality monitoring sections in the basin from January 2017 to May 2020 were selected as the training set and the water quality data from June to August 2020 as the validation set for the model. The simulation results show that the average relative error of the water quality index of each section simulated by the trained BP neural network model was less than 7%, and all the correlation coefficients exceeded 0.98. The average relative errors of the water quality indices in the verification set were all less than 18%. The prediction accuracy of the proposed model is high and satisfactory, so it can be used for the water quality prediction of Xiaohe River Basin.
查看全文  查看/发表评论  下载PDF阅读器
关闭