Page 22 - 《水资源与水工程学报》2023年第1期
P. 22
1 8 & ' ( ) & * + , - 2023 $
¨KpKS、 öç1、 E¾sú!1]a .Á、 1qVWLTÞ!"¬'):P^_。
ÌáppKL1oå°, 2 2020 ã 2 ª 7 ]
9 ] ICESat-2/ATLAS ô7 2020 ã 2 ª 21 ] ©ªKL:
Landsat8 VWª*¸ñ( E 8(a)), »¼FT [1]WOOLWAYRI,MABERLYSC.Climatevelocityinin
UKrnõnpqKe={¹v³eÉ& landstandingwaters[J].NatureClimateChange,2020,
Ñb, ÃÄàE 8(b)。E 8(a) ATLAS <~ 10:1124-1129.
[2]YANGHaiqing,XUJianhua,CHENYaning,etal.Hasthe
ô 1L 1R»ºKpõnpq, ~ô
BostenLakeBasinbeendryorwetduringtheclimatetransi
2L、2R、3L 3R»ºKprnpq, ÃME 8
tioninNorthwestChinainthepast30years ?[J].Theoreti
(b) Þu, Áæ ICESat-2 VWþÎå(fðµfK
calandAppliedClimatology,2020,141:627-644.
L³eÉ&vk^ç, ¤crnKp³eÉ&
[3]LEVIADF,CREEDIF,HANNAHDM,etal.Homoge
sÖáÓõnKpÉ 0.10±0.05m。u¤ø, FT nizationoftheterrestrialwatercycle [J].NatureGeosci
UKKe+K$^
={]T,$C]T, `K ence,2020,13:656-658.
prnXõnpqÖß½É&Ñb, ¤K [4]WULFH,BOOKHAGENB,SCHERLERD.Differentia
e^
={¬ , KprnXõnÉ&sÖá` tingbetweenrain ,snow,andglaciercontributionstoriver
ÌbáÍ9。 dischargeinthewesternHimalayausingremotesensingda
taanddistributedhydrologicalmodeling [J].Advancesin
5 I N WaterResources,2016,88:152-169.
[5] REVEL M,IKESHIMA D,YAMAZAKID,etal.A
(1)ENVISat&ERS、Jason-1&2、ICESat-1、ICE
Frameworkforestimatingglobalscaleriverdischargeby
Sat-2 VWs:|j6
¬Qª¿à
assimilatingsatellitealtimetry[J].WaterResourcesRe
f¿、
¿, úûÿ:|j6KL1oQô;
search ,2021,57(1):e2020WR027876.
X ICESat-1/GLAS 6Éô7:Ó,ICESat-2/AT [6]BIGGSJ,WRIGHTTJ.HowsatelliteInSARhasgrownfrom
LAS 6Éô7ÜÝr、 :-
¬õ、 ¢6[¿ opportunisticsciencetoroutinemonitoringoverthelastdecade
É, ¢¥¦Ð=mKL1eÉ&êÐ, b1 [J].NatureCommunications,2020,11(1):3863.
qevÍiKL1oòÞ_M, Þ¾K [7]TOTHC,J? K?W G.Remotesensingplatformsandsen
1hÞ、 1JVÞÄe+^Èij。 sors :Asurvey[J].ISPRSJournalofPhotogrammetryand
( 2)1975-2020 ãFTUKãÖ1o RemoteSensing ,2016,115:22-36.
[8]CR?TAUXJF,BIRKETTC.Lakestudiesfrom satellite
¿êø+ 4 «,):1975-1987 ãKL1
radaraltimetry[J].ComptesRendusGeoscience,2006,
ovk;1987-2002ãKL1oòÞø;2002-
338(14-15):1098-1112.
2013 ãKL1o!"kÎ;2013-2020 ãKL1o
[9]YANGJun,GONGPeng,FURong,etal.Theroleofsat
;<ø。X 1975ãsÖ1o:Ó,2020ãFT
elliteremotesensinginclimatechangestudies[J].Nature
UKKpãÖ1o\¨ÿ 1048.10±0.12m, É ClimateChange,2013,3:875-883.
ÿ0.70±0.15m。 [10]YIShuang,WANGQiuyu,CHANGLe,etal.Changes
( 3) \]^çe»¼µ@,ICESat-1、ICESat- inmountainglaciers ,lakelevels,andsnowcoveragein
2 VW6Éô7¥¦Ð=
~²;^Kp³e theTianshanmonitoredbyGRACE,ICESat,Altimetry,
É&X êË&, ¤c ICESat-2VW andMODIS[J].RemoteSensing,2016,8(10):798.
6Éô7ÌKp1oêêТ6[¿ [11]FAYADI,BAGHDADIN,BAILLYJS,etal.Analysis
ofGEDIelevationdataaccuracyforinlandwaterbodiesal
ICESat-1 VW6Éô7。KL1o ê
timetry[J].RemoteSensing,2020,12(17):2714.
mnÿFTUKSq1U¹·O¥ìEO
[12]KLEINHERENBRINKM,LINDENBERGHRC,DITMARP
ÞïðovêÎp, £·Oêa, F
G.MonitoringoflakelevelchangesontheTibetanPlateau
TUKKp1o!"kÎOP$å
EOÞÛ±
andTianShanbyretrackingCryosatSARInwaveforms [J].
ÿ[KSÚ, `Q$ÑÒ®1ÚDx%Ò±1
JournalofHydrology ,2015,521:119-131.
Úúû³÷。ab, KL1oên$K1hÞ [13]YUANCui,GONGPeng,BAIYuqi.Performanceassess
OP2Þa, Ü5¥æKL1ÚN¯¥Ús mentofICESat-2laseraltimeterdataforwaterlevel
}, Ì+^KL1YZM\Á<2、 1VWÜÝÄ measurementoverlakesandreservoirsinChina [J].Re