文章摘要
赵水霞, 陈晓俊, 王文君, 周泉成, 尹 航, 李 玮.黄河内蒙古段封河期水面-大气非线性热力学模型探究Journal of Water Resources and Water Engineering[J].,2021,32(3):130-136
黄河内蒙古段封河期水面-大气非线性热力学模型探究
Nonlinear thermodynamic analysis of water surface-atmosphere during freeze-up period of the Inner Mongolia reach of the Yellow River
  
DOI:10.11705/j.issn.1672-643X.2021.03.18
中文关键词: 河冰  非线性热力学模型  影响因素  封河期  黄河内蒙古段
英文关键词: river ice  nonlinear thermodynamic model  influencing factor  freez-up period  Inner Mongolia reach of the Yellow River
基金项目:国家自然科学基金项目(52009084,51669024);内蒙古自治区自然科学基金项目(2020BS05038)
Author NameAffiliation
ZHAO Shuixia, CHEN Xiaojun, WANG Wenjun, ZHOU Quancheng, YIN Hang, LI Wei (水利部牧区水利科学研究所 内蒙古自治区 呼和浩特 010020) 
Hits: 1508
Download times: 395
中文摘要:
      封河期水面-大气界面热量交换决定了河道内水温变化,是影响河流冰情及冰凌堵塞的主要热力因素。以黄河内蒙古段冰期水面-大气净太阳辐射、有效长波辐射、蒸发及热传导辐射特征为基础,探讨分析现存非线性热力学模型的差异及其影响因素。结果表明:基于Shen & Chiang和Ashton非线性热力学模型的黄河内蒙古段封河期水面-大气平均热交换量分别为124.05和114.31 W/(m2·h),受太阳短波辐射昼夜交替变化及内蒙古高纬度地区昼夜温差较大的影响,日均热量损失规律性明显,水体表面吸收的热量在11:00-15:00时段内大于其释放的热量,其他时段则相反;气象因子对总热量损失的贡献率呈现气温(Ta)>相对湿度(RH)>露点温度(Td)>风速(Va)>大气压(P),蒸发辐射对风速的响应大于热传导辐射,但风速对总热量损失的影响效应并不显著;风速突增与气温骤降的双重作用是导致热量传输速度加快和极值出现的主要原因,风速大于4 m/s时模型结果差异性显著,揭示了模型在冰期热力学过程研究中的区别和影响因素;总体而言, Ashton热力学模型更适用于黄河内蒙古段封河期流凌密度及冰情特征的研究。
英文摘要:
      The heat exchange between watersurface and atmosphere determines the change of water temperature in the river,which is the main thermal factor affecting the ice condition and the formation of ice jams. We compared the performance of two existing nonlinear thermodynamic models and studied the influencing factors based on the analysis of net solar radiation, effective longwave radiation, evaporation and heat conduction characteristics in the freeze-up period of the Inner Mongolia reach of the Yellow River, China. Results show that the average hourly heat budget at the surface water-atmosphere interface during the freeze-up period was estimated to be 114.31 W/(m2·h) and 124.05 W/(m2·h) by Ashton’s and Shen & Chiang’s methods, respectively. Affected by the diurnal alternation of solar shortwave radiation and the large temperature difference between day and night in the Inner Mongolia, the daily average heat loss shows a regular changing pattern, which is the heat absorption in water surface is greater than heat release during the period of 11:00-15:00, but it is the opposite in the other periods.The contribution of meteorological factors of the total heat loss is as follows:temperature (Ta)>relative humidity (RH)>dew point temperature (Td)>wind speed (Va) and atmospheric pressure (P). The evaporation is more sensitive to the wind speed than heat conduction, but the effect of wind speed on the total heat loss is not significant. The dual effects of the sudden increase of wind speed and sudden drop of air temperature are the main factors speeding up the heat conduction, resulting in the occurrence of the extreme value of total heat loss. The total heat loss calculated by the two models are inconsistent when the wind speed is greater than 4 m/s, showing the differences between these two models and the corresponding influencing factors. To summarize, Ashton’s thermodynamic model is more applicable to the study of the ice density and condition during the freeze-up period of the Inner Mongolia reach of the Yellow River.
View Full Text   View/Add Comment  Download reader
Close
function PdfOpen(url){ var win="toolbar=no,location=no,directories=no,status=yes,menubar=yes,scrollbars=yes,resizable=yes"; window.open(url,"",win); } function openWin(url,w,h){ var win="toolbar=no,location=no,directories=no,status=no,menubar=no,scrollbars=yes,resizable=no,width=" + w + ",height=" + h; controlWindow=window.open(url,"",win); } &et=1E24C25A86E5883F24FE182C76F18E62B6BE27CE7409379B8B696747A542A498E700963D855E51DF9593786877906297613A205DC2AD0172BC743415F658CDC98AF214FB3445056CFA43A59D2216547EE11AC51CB9E2F223A2CC70F00C1714C9BE0A2805BA7F3186D84BAB6D05DBB8C50C2C3DD97EA32919CDDF69378627D3EB84CA75E65AACBB3F&pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=3ECA06F115476E3F&jid=BC473CEDCB8CE70D7B12BDD8EA00FF44&yid=9475FABC7A03F4AB&aid=2B505B60C67511EF22BAFF5750C7F8A7&vid=&iid=38B194292C032A66&sid=B47A0E731AF43EB2&eid=58F693790F887B3B&fileno=20210318&flag=1&is_more=0">