• ▶ 2008-2024年被中国情报信息研究所评价中心评为“中国科技核心期刊”
  • ▶ 2019-2024年连续三届被中国科学院文献情报中心中国科学引文数据库CSCD(核心库)收录
  • ▶ 2021、2023年入编北京大学图书馆《中文核心期刊要目总览》
  • ▶ 2020-2024连续四年入选《科技期刊世界影响力指数(WJCI)报告》
阮艳平, 邱 勇, 马德坡, 季伦永, 孔德鑫.深孔近壁紊流发展对闸孔过流能力的影响水资源与水工程学报[J].,2025,36(2):101-108
深孔近壁紊流发展对闸孔过流能力的影响
Development of near-wall turbulent flow in deep drainage holes affects sluice gate flow capacity
  
DOI:10.11705/j.issn.1672-643X.2025.02.12
中文关键词:  深式泄水孔  过流能力  近壁紊流层  能量耗散  紊流时均切应力
英文关键词:deep drainage hole  discharge capacity  near-wall turbulent layer  energy dissipation  mean turbulent shear stress
基金项目:兴滇英才支持计划项目(202201788)
作者单位
阮艳平, 邱 勇, 马德坡, 季伦永, 孔德鑫 (云南农业大学 水利学院 云南 昆明 650201) 
摘要点击次数: 225
全文下载次数: 5
中文摘要:
      高水头水利枢纽中深式泄水孔的泄流能力对工程安全性具有直接影响。采用RNG k-ε湍流模型模拟了深孔弧形闸门全开(1.20 m)状态下闸前水流的紊动特性。结果表明:随着作用水头的增加,近壁区域水流速度梯度增大,近壁紊流层厚度相应增加,紊流时均切应力也随之增大,导致水流紊乱程度加剧和能量耗散显著增加。具体而言,当作用水头从12.5 m增加到52.5 m时,闸前近壁紊流层的最大厚度增加了67%,最大切应力增加了4.57倍,最大紊动强度增加了89%,而紊流动能耗损则增加了5.50倍。过闸水流在上述紊动特性的综合影响下,其流量系数随作用水头的上升先增大后减小(由0.915增至0.931后又下降至0.930)。在作用水头为42.5 m时,表征闸孔过流能力的流量系数达到最大值。然而,随着作用水头继续增加,尽管闸孔过流量继续增大,但增幅持续减小,表明闸孔超泄能力进一步下降。因此,随着作用水头的增加,深孔近壁紊流层厚度增加(有效过流面积减少),紊动强度加大,导致闸前水流的能量耗散增加,从而使流量系数的增长率减小甚至出现负增长,在深孔泄流能力计算中应考虑这一因素。
英文摘要:
      The discharge capacity of deep drainage holes in high-head hydraulic structures is closely correlated with the structure safety. The turbulence characteristics of the flow in front of the deep hole with a fully opened radial gate (1.20 m) was simulated by RNG k-ε turbulence model. The results indicate that as the applied water head increases, the velocity gradient of the near-wall flow also increases, leading to a corresponding rise in the thickness of the turbulent boundary layer. Consequently, the mean turbulent shear stress, flow turbulence and energy dissipation increases Significantly. As the applied water head increases from 12.5 to 52.5 m, the maximum thickness of the turbulent boundary layer, maximum shear stress, maximum turbulence intensity and maximum turbulence dissipation rate in front of the gate increases by 0.67, 4.57, 0.89, and 5.50 times, respectively. Under these combined effects, the discharge coefficient of the discharge flow first increases and then decreases with the rising water head (increases from 0.915 to 0.931 and then decreases to 0.930). Notably, at an applied water head of 42.5 m, the discharge coefficient, which characterizes the drainage capacity of the gate opening, reaches its maximum value. With continued increase in the applied head, although the discharge flow continues to rise, the increment progressively diminishes, indicating a corresponding decline in the gate’s surge discharge capacity. It indicates that with the increase of applied water head, the thickness of the turbulent boundary layer in deep holes grows (the effective flow area decreases), the turbulence intensity increases, and the energy dissipation of the flow in front of the gate rises, leading to a reduced increase in the flow coefficient, or even negative growth. This should be considered in the calculation of deep hole discharge capacity.
查看全文  查看/发表评论  下载PDF阅读器
关闭