• ▶ 2008-2024年被中国情报信息研究所评价中心评为“中国科技核心期刊”
  • ▶ 2019-2024年连续三届被中国科学院文献情报中心中国科学引文数据库CSCD(核心库)收录
  • ▶ 2021、2023年入编北京大学图书馆《中文核心期刊要目总览》
  • ▶ 2020-2024连续四年入选《科技期刊世界影响力指数(WJCI)报告》
李有为, 肖苡辀.强潮急流跨海桥梁基础局部冲刷研究水资源与水工程学报[J].,2025,36(2):84-92
强潮急流跨海桥梁基础局部冲刷研究
Investigation on local scour of a sea-crossing bridge foundation under strong tidal waves and torrents
  
DOI:10.11705/j.issn.1672-643X.2025.02.10
中文关键词:  强潮急流  跨海桥梁基础  局部冲刷  物理模型  数值模拟  原位实测
英文关键词:strong tidal wave and current  foundation of the sea-crossing bridge  local scour  physical model  numerical simulation  in-situ measurement
基金项目:中国博士后科学基金第61批面上项目(2017M612541)
作者单位
李有为1,2,3,4,5, 肖苡辀1,2,3,4,5 ( 1.中交第二航务工程局有限公司 湖北 武汉 430040 2.中交二航局第四工程有限公司 安徽 芜湖 2410003.交通运输行业交通基础设施智能制造技术研发中心 湖北 武汉430040 4.长大桥梁建设施工技术交通行业重点实验室 湖北 武汉430040 5.中交公路长大桥建设国家工程研究中心有限公司 湖北 武汉 430040) 
摘要点击次数: 18
全文下载次数: 1
中文摘要:
      跨海桥梁基础冲刷问题极为复杂,探究各个建设阶段中的床面冲刷情况,对于预防桥梁由于冲刷造成的损坏至关重要。以杭州湾跨海铁路大桥(在建)南航道桥主墩基础为例,针对桩基施工与承台施工的不同阶段,通过物理模型试验、数值模拟及现场原位测量3种手段进行桥梁基础局部冲刷的研究,分析了各阶段的冲刷特性和水力特性。结果表明:物理模型试验和数值模拟的结果与实测测量数据基本吻合;桩基施工阶段期间,粉砂层已被冲刷掉,当前泥面主要由更难以被冲刷的淤泥质土构成;在大桥基础冲刷过程中,70%的冲刷深度出现在冲刷初期的30%时间内;围堰减小了床面切应力的整体变化范围,降低了周边水流流速,并在迎水面和背水面形成了淤积区;围堰安装后,预测将进一步冲刷4 m,使冲刷深度和范围增加约30%,这将超出桩基设计的冲刷深度,影响其承载能力,需采取预防或保护措施以免受进一步冲刷。研究成果可为类似跨海大桥的设计、建设和运营管理等方面提供参考。
英文摘要:
      The causes of foundation scour of sea-crossing bridges are complicated. To prevent water damage, it is critical to investigate the local scour situation these bridges face at different construction stages. Taking the main pile foundation of Hangzhou Bay Railway Bridge (under construction) as the case study, we investigated the scour features and hydraulic characteristics of the bridge during different foundation construction stages by physical model test, numerical simulation and in-situ measurements. The results show that the model test and numerical simulation results are consistent with the measured data. During the pile foundation construction stage, the tidal waves and torrents have scoured the sandy layer off, left the bridge site surface with a muddy clay layer, which is more difficult to be soured off. 70% of the scour depth occurs in the first 30% of the scour duration. The cofferdam can reduce the relative variation range of shear stress on the bed surface and the surrounding flow velocity, resulting in the formation of a silting area on both the stoss and lee side. After the cofferdam is lowered, the scour depth will continue to grow another 4 m, which can further increase the scour depth and scope by about 30%, exceeding the designed scour depth of pile foundation. Therefore, countermeasures should be considered for scour prevention and foundation protection. The research results can provide a reference for the design, construction and operation management of similar sea-crossing bridges.
查看全文  查看/发表评论  下载PDF阅读器
关闭