• ▶ 2008-2024年被中国情报信息研究所评价中心评为“中国科技核心期刊”
  • ▶ 2019-2024年连续三届被中国科学院文献情报中心中国科学引文数据库CSCD(核心库)收录
  • ▶ 2021、2023年入编北京大学图书馆《中文核心期刊要目总览》
  • ▶ 2020-2024连续四年入选《科技期刊世界影响力指数(WJCI)报告》
王琨瑜, 刘向阳.基于Reg-Crossformer模型的日径流量预测水资源与水工程学报[J].,2025,36(1):40-46
基于Reg-Crossformer模型的日径流量预测
Daily runoff prediction based on Reg-Crossformer model
  
DOI:10.11705/j.issn.1672-643X.2025.01.05
中文关键词:  日径流时间序列预测  深度学习  Reg-Crossformer  渭河流域
英文关键词:daily runoff time series prediction  deep learning  Reg-Crossformer  the Weihe River Basin
基金项目:国家自然科学基金重点项目(41830110)
作者单位
王琨瑜, 刘向阳 (河海大学 数学学院 江苏 南京 211100) 
摘要点击次数: 184
全文下载次数: 82
中文摘要:
      以渭河流域为研究背景,选取咸阳水文站1961—2015年的逐日径流量数据,通过引入Crossformer模型,利用两阶段注意力机制,专注于多维时间序列数据,更好地捕捉不同维度之间的关联。提出了结合多源协变量因素的Reg-Crossformer模型,预测渭河流域日径流量,进一步增强该模型对复杂水文条件适应的能力。结果表明:Reg-Crossformer模型相比原Crossformer模型,其相关系数(R)和纳什效率系数(NSE)分别提高了7.46%和21.63%,均方根误差(RMSE)降低了15.25%;在不同模型对比试验中,Reg-Crossformer模型在各项评价指标上均优于传统机器学习模型(SVM)及深度学习模型(LSTM和Informer),表现出更优的模拟效果和稳定性。Reg-Crossformer模型为准确预测渭河流域径流量提供了一种新的方法,对未来流域水资源管理及深度学习模型在水文模拟领域应用方面具有参考价值。
英文摘要:
      Taking the Weihe River Basin as the research background, the daily runoff data of Xianyang station from 1961 to 2015 are selected as the data input for the Crossformer model. Focusing on the multi-dimensional time series data, this paper adopts the two-stage attention (TSA) mechanism to better capture the correlation between different dimensions. In addition, the Reg-Crossformer model incorporating multi-source covariates is proposed to further enhance the adaptability of the model to complex hydrological conditions. The results of daily runoff prediction in the Weihe River Basin show that compared with the original Crossformer model, the proposed model improves the correlation coefficient (R) and Nash efficiency coefficient (NSE) by 7.46% and 21.63% respectively; reduces the root mean square error (RMSE) by 15.25%. In the comparative experiments of different models, Reg-Crossformer outperforms the conventional machine learning model (SVM) and deep learning models (LSTM and Informer) across various evaluation indicators, demonstrating superior simulation performance and stability. Reg-Crossformer model offers a new approach for the accurate prediction of runoff in the Weihe River Basin, and provides valuable insights into future application of water resources management and deep learning models in hydrological simulation.
查看全文  查看/发表评论  下载PDF阅读器
关闭