• ▶ 2008-2024年被中国情报信息研究所评价中心评为“中国科技核心期刊”
  • ▶ 2019-2024年连续三届被中国科学院文献情报中心中国科学引文数据库CSCD(核心库)收录
  • ▶ 2021、2023年入编北京大学图书馆《中文核心期刊要目总览》
  • ▶ 2020-2024连续四年入选《科技期刊世界影响力指数(WJCI)报告》
刘声洪, SOOMRO Shan-E-Hyder , 李 颖, 李英海, 程 雄, 杨少康.基于相关性检验的VMD-LSTM耦合模型月径流模拟研究水资源与水工程学报[J].,2024,35(2):71-82
基于相关性检验的VMD-LSTM耦合模型月径流模拟研究
Simulation of monthly runoff by VMD-LSTM coupled model based on correlation testing
  
DOI:10.11705/j.issn.1672-643X.2024.02.08
中文关键词:  相关性检验  变分模态分解  长短期记忆神经网络  径流模拟  博阳河流域
英文关键词:correlation testing  variational modal decomposition (VMD)  long short-term memory (LSTM) neural network  runoff simulation  the Boyang River Basin
基金项目:国家自然科学基金项目(52179018,51909010); 国家重点研发计划课题(2022YFC3203902-3); 智慧长江与水电科学湖北省重点实验室(中国长江电力股份有限公司)开放基金项目(ZH2002000103); 长江科学院开放研究基金项目( CKWV2021889/KY)
作者单位
刘声洪1, SOOMRO Shan-E-Hyder 1, 李 颖1,2, 李英海1,2, 程 雄1,2, 杨少康3 (1.三峡大学 水利与环境学院 湖北 宜昌 443002 2.三峡大学 水电工程施工与管理湖北省重点实验室湖北 宜昌 443002
3.仙桃市河道堤防管理局
湖北 仙桃 433000) 
摘要点击次数: 600
全文下载次数: 264
中文摘要:
      近年来,极端强降雨和干旱事件频发,流域水文过程的不确定性变化加剧,使得流域中长期径流预测的难度增加。为提升LSTM(长短期记忆神经网络)模型对径流时序变化的捕捉及拟合能力,以博阳河流域为研究区域,选取月降雨、蒸发及流量数据,利用VMD(变分模态分解)和相关性检验,排除无关频率分量对LSTM模型规律学习的干扰,以达到模型输入优选的目的;此外,还考虑了VMD与LSTM模型的不同耦合方式对模型精度和稳定性的影响,最终优选出二者兼具的VMD-LSTM月径流耦合模式。结果表明:VMD-LSTM耦合模型可显著提升模拟精度,但在模型稳定性方面有所欠缺;而基于相关性检验的VMD-LSTM耦合模型不仅能够进一步提高模型精度,并且在模型的稳定性方面也有所改进。在基于相关性检验的VMD-LSTM耦合模型的不同耦合方式对比中,对输入、输出均进行VMD分解且对输入变量进行优选的D1耦合方案的模拟效果最好,其60次模拟计算的NSE均为0.98以上且稳定性极佳;另外,在分析方案D1的可解释性时发现历史径流对于LSTM模型的影响要比降雨和蒸发大。该研究结论可为流域水资源管理提供精准可信的中长期径流模拟成果。
英文摘要:
      In recent years, the frequent occurrence of extreme heavy rainfall and drought events has intensified the uncertainty changes of hydrological processes in the basin, making it more difficult for the prediction of medium and long-term runoff in the basin. In order to improve the ability of LSTM (long short-term memory) model in capturing and fitting temporal changes in runoff, taking the Boyang River Basin as the study area, we collected the data of monthly rainfall, evaporation and flow for the simulation. Then, VMD (variational modal decomposition) and correlation testing are used to eliminate the interference of irrelevant frequency components on the regular learning of LSTM model for the purpose of model input optimization. In addition, the effects of different coupling methods between VMD and LSTM model on the accuracy and stability of the model are considered, by which the VMD-LSTM monthly runoff coupled model which takes the advantages of both is finally selected. The simulation results show that the VMD-LSTM coupled model can significantly improve the simulation accuracy but it is lacking in model stability, the VMD-LSTM coupled model based on correlation testing can not only further improve the model accuracy, but also improves the stability of the model. In the comparison of the different coupling methods of the VMD-LSTM coupled model based on the correlation testing, scheme D1 which decomposes both inputs and outputs with VMD and optimizes inputs has the best simulation accuracy and stability, with an NSE value of 0.98 and above for 60 simulations. In addition, when analyzing the interpretability of scheme D1, it is found that historical runoff has a greater impact on the LSTM model than rainfall and evaporation. The results of this study can provide accurate and reliable medium and long-term runoff simulations for the water resources management in the basin.
查看全文  查看/发表评论  下载PDF阅读器
关闭