• ▶ 2008-2024年被中国情报信息研究所评价中心评为“中国科技核心期刊”
  • ▶ 2019-2024年连续三届被中国科学院文献情报中心中国科学引文数据库CSCD(核心库)收录
  • ▶ 2021、2023年入编北京大学图书馆《中文核心期刊要目总览》
  • ▶ 2020-2024连续四年入选《科技期刊世界影响力指数(WJCI)报告》
项 勇, 陈芸芝, 唐丽芳, 汪小钦.基于EnKS和SWAT模型的闽江流域径流数据同化水资源与水工程学报[J].,2023,34(4):66-75
基于EnKS和SWAT模型的闽江流域径流数据同化
Stremflow data assimilation of the Minjiang River Basin based on EnKS approach and SWAT model
  
DOI:10.11705/j.issn.1672-643X.2023.04.08
中文关键词:  地表水文过程中观测变量对状态变量的响应存在时间滞后性,为提高径流数据同化的精度,以闽江流域为研究区,基于集合卡尔曼平滑器(EnKS)和SWAT模型,构建径流数据同化方案,并与集合卡尔曼滤波(EnKF)方法进行对比,评价不同同化模型的精度,分析数据同化对不同径流分量的影响。结果表明:EnKS最优时间窗口长度在不同水文周期、流域存在差异  考虑水文模型的时间滞后性可以有效提高模型的同化精度,对比EnKF方法,EnKS方法的纳什效率系数(NSE)在七里街、沙县、竹岐3个站点上分别提升了0.03、0.12、0.03,均方根误差(RMSE)分别减小了7.43%、26.81%、4.25%  数据同化方法对不同径流分量的改进程度存在空间异质性和时间异质性,在高渗透率土壤和陡坡区域EnKS方法能使壤中流获得更显著的改进,丰水期EnKS方法对地表径流的改进较枯水期更明显。
英文关键词:streamflow  data assimilation  ensemble Kalman smoother (EnKS) method  SWAT model  time lag  the Minjiang River Basin
基金项目:中国科学院战略性先导科技专项子课题(XDA23100503);福建省水利科技项目(MSK202210、MSK202214)
作者单位
项 勇1,2, 陈芸芝1,2, 唐丽芳3, 汪小钦1,2 (1.福州大学 数字中国研究院(福建) 福建 福州 350108 2.福州大学 空间数据挖掘和信息共享教育部重点实验室福建 福州 350108 3.福建省水土保持实验站 福建 福州 350001) 
摘要点击次数: 1104
全文下载次数: 502
中文摘要:
      地表水文过程中观测变量对状态变量的响应存在时间滞后性,为提高径流数据同化的精度,以闽江流域为研究区,基于集合卡尔曼平滑器(EnKS)和SWAT模型,构建径流数据同化方案,并与集合卡尔曼滤波(EnKF)方法进行对比,评价不同同化模型的精度,分析数据同化对不同径流分量的影响。结果表明:EnKS最优时间窗口长度在不同水文周期、流域存在差异;考虑水文模型的时间滞后性可以有效提高模型的同化精度,对比EnKF方法,EnKS方法的纳什效率系数(NSE)在七里街、沙县、竹岐3个站点上分别提升了0.03、0.12、0.03,均方根误差(RMSE)分别减小了7.43%、26.81%、4.25%;数据同化方法对不同径流分量的改进程度存在空间异质性和时间异质性,在高渗透率土壤和陡坡区域EnKS方法能使壤中流获得更显著的改进,丰水期EnKS方法对地表径流的改进较枯水期更明显。
英文摘要:
      A time lag exists in the response of observed variables to state variables in surface hydrological process. To improve the accuracy of streamflow data assimilation, a streamflow data assimilation scheme was constructed based on the ensemble Kalman smoother (EnKS) and SWAT model for the Minjiang River Basin, which was then compared with the ensemble Kalman filter (EnKF) method, so as to evaluate the accuracy of different assimilation methods and to analyze the effect of data assimilation on different streamflow components. The results indicate that the optimal time window length of EnKS differs in each hydrological period and basin, and the consideration of the time lag of the hydrological model can effectively improve the accuracy of model assimilation. Compared with the EnKF method, the NSE of the EnKS method increased by 0.03,0.12,0.03 at the Qilijie station, Shaxian station and Zhuqi station, respectively; whereas the RMSE of the three stations decreased by 7.43%, 26.81% and 4.25%, respectively. There is spatial and temporal heterogeneity in the improvement effect of data assimilation method on different streamflow components. The EnKS method can significantly improve the accuracy of the lateral flow in regions with high-permeability soil and steep slopes, and it has a better performance in wet season than dry season for the improvement of surface flow prediction.
查看全文  查看/发表评论  下载PDF阅读器
关闭