• ▶ 2008-2024年被中国情报信息研究所评价中心评为“中国科技核心期刊”
  • ▶ 2019-2024年连续三届被中国科学院文献情报中心中国科学引文数据库CSCD(核心库)收录
  • ▶ 2021、2023年入编北京大学图书馆《中文核心期刊要目总览》
  • ▶ 2020-2024连续四年入选《科技期刊世界影响力指数(WJCI)报告》
常玉儒, 刘 夏, 赵小宁, 沈彦军.滹沱河山区径流多尺度变化规律及影响因素研究水资源与水工程学报[J].,2023,34(2):59-70
滹沱河山区径流多尺度变化规律及影响因素研究
Multi-scale analysis of runoff variability and its influencing factors in the mountainous Hutuo River Basin
  
DOI:10.11705/j.issn.1672-643X.2023.02.08
中文关键词:  径流深  随机森林模型  影响因素  小觉流域  冶河流域  滹沱河山区
英文关键词:runoff depth  random forest model  influencing factor  the Xiaojue River Basin  the Ye River Basin  the mountainous Hutuo River Basin
基金项目:河北省创新研究群体项目(D2021503001),中国科学院“人才计划”项目
作者单位
常玉儒1,2, 刘 夏1, 赵小宁3, 沈彦军1,2 (1.中国科学院遗传与发育生物学研究所农业资源研究中心 中国科学院农业水资源重点实验室 河北省节水农业重点实验室 河北 石家庄 050021 2.中国科学院大学 北京 1000493.河北省石家庄水文勘测研究中心 河北 平山 050051) 
摘要点击次数: 1020
全文下载次数: 454
中文摘要:
      径流是反映流域气候及地理环境变化的重要指标,辨析其多尺度变化特征及影响因素,对于认识气候变化背景下流域水文情势变化规律及维护水资源安全具有重要意义。以滹沱河山区小觉流域和冶河流域为例,结合水文和气象数据,应用Mann-Kendall趋势分析、突变检验及Morlet小波函数等方法,分析两流域1960—2018年径流深趋势、突变、周期等多尺度变化特征,并利用相关分析与随机森林模型揭示了气温、降水、潜在蒸散发、叶面积指数对不同时段(汛期、非汛期)月径流深变化的相对重要性。研究结果表明:1960—2018年多年平均尺度上,冶河流域径流深(69.34 mm)大于小觉流域(39.07 mm),两流域年径流深均呈显著下降趋势,且冶河流域的下降速率(13.0 mm/10a)大于小觉流域的下降速率(8.7 mm/10a);在月和季节尺度上,两流域径流深也呈现显著下降趋势,尤其在夏季时段径流深下降趋势最快。小觉流域和冶河流域径流深分别在1981和1979年发生突变,且突变后径流深下降速率较突变前有所减缓,同时极端流量出现频率减少,其中8月份流量减小幅度最大。小觉流域的径流深主周期分别为15、8和5 a,冶河流域的径流深主周期分别为16、10和5 a,在第一主周期的时间尺度上都存在5个丰枯变化周期。对汛期和全年时段进行相关分析和随机森林模型的结果表明,降水是影响流域径流长期变化的主导因子,尤其在汛期时段;在非汛期,叶面积指数是影响径流变化的重要因素。
英文摘要:
      Runoff is an important index which can reflect the climate and geographical environment change in a basin, analyzing its multi-scale variability and influencing factors is of great significance for the understanding of hydrological changes and the protection of water resources security under the background of climate change. The Xiaojue River Sub-basin(XJ) and Ye River Sub-basin (YR) in the mountainous Hutuo River Basin were selected to study the multi-scale runoff variability of tendencies, abrupt changes and periods using M-K trend test, abrupt change test and Morlet wavelet analysis based on the monitored hydrological and meteorological data. Meanwhile, the relative importance of driving forces (temperature, precipitation, potential evapotranspiration and leaf area index) at different periods (flood season and non-flood season) on monthly runoff changes were revealed by correlation analysis and random forest model. Results showed that from 1960 to 2018, the annual average runoff depth of the two sub-basins showed a significantly decreasing trend, but the mean annual runoff depth of the YR (69.34 mm) was greater than that of the XJ (39.07 mm), which decreased at a rate of 13.0 mm/10a and 8.7 mm/10a, respectively; the monthly and seasonal runoff depth also decreased significantly, especially in summer. An abrupt change was observed in 1981 and 1979 in the XJ and YR, respectively, after the abrupt change the decrease rate of the runoff depth slowed down, and the frequency of extreme runoff decreased, with the largest decline of runoff spotted in August. The main periods of runoff depth were 15, 8 , 5 a in the XJ and 16 , 10, 5 a in the YR. Additionally, there were five periods of dry and wet at the timescale of the first principal period. The results of the correlation analysis and random forest model indicated that precipitation was the dominant factor affecting the long-term runoff changes, especially in the flood season, whereas leaf area index was another important factor affecting the runoff changes in the non-flood season.
查看全文  查看/发表评论  下载PDF阅读器
关闭