• ▶ 2008-2024年被中国情报信息研究所评价中心评为“中国科技核心期刊”
  • ▶ 2019-2024年连续三届被中国科学院文献情报中心中国科学引文数据库CSCD(核心库)收录
  • ▶ 2021、2023年入编北京大学图书馆《中文核心期刊要目总览》
  • ▶ 2020-2024连续四年入选《科技期刊世界影响力指数(WJCI)报告》
张晓煊, 宋松柏, 张炳林.基于变分模态分解的分频径流预测模型水资源与水工程学报[J].,2023,34(1):84-90
基于变分模态分解的分频径流预测模型
Runoff prediction model of frequency division based on variational mode decomposition
  
DOI:10.11705/j.issn.1672-643X.2023.01.10
中文关键词:  径流预测  变分模态分解  神经网络  黄河流域
英文关键词:runoff prediction  variational mode decomposition (VMD)  neural network  the Yellow River Basin
基金项目:国家自然科学基金项目(52079110)
作者单位
张晓煊1,2, 宋松柏1,2, 张炳林1,2 (1.西北农林科技大学 水利与建筑工程学院 陕西 杨凌 712100 2.西北农林科技大学 旱区农业水土工程教育部重点实验室 陕西 杨凌 712100) 
摘要点击次数: 1114
全文下载次数: 459
中文摘要:
      准确的径流预测对于流域防洪减灾、农业灌溉、水库调度等具有重要意义。针对径流序列具有较强的非线性和非平稳性特征,提出一种月径流预测混合模型VMD-(CNN-LSTM, ELMAN)。首先运用VMD将径流序列分解为多个模态分量,并计算各个模态分量的样本熵值(SE),将其划分为高频和中低频分量;然后运用CNN-LSTM模型预测高频分量,运用ELMAN模型预测中低频分量;最后将预测结果相加得到最终预测结果。将模型应用于黄河流域中下游段白马寺和黑石关水文站的月径流预测,并与CNN-LSTM、ELMAN、VMD-CNN-LSTM模型的预测结果进行对比与评价。研究结果表明:本文模型预测结果的NSE值均大于0.99,优于其他模型,表明VMD-(CNN-LSTM, ELMAN)模型具有较高的预测精度,可应用于实际研究区的径流预测。
英文摘要:
      Accurate runoff prediction is of great significance for agricultural irrigation, reservoir scheduling, flood control and disaster mitigation in the basin. Aiming at the strong nonlinearity and non-stationarity of the runoff series, a hybrid model for monthly runoff prediction, VMD-(CNN-LSTM, ELMAN), is proposed. Firstly, VMD is used to decompose the runoff sequence into multiple modal components, and the sample entropy (SE) of each modal component is calculated, according to which the components are divided into high-frequency and medium-low frequency components. Then the CNN-LSTM model is used for the prediction of high-frequency components, the ELMAN model for the medium-low frequency components. Finally the predictions results are summed up. The model is then applied to the monthly runoff prediction of Baimasi Station and Heishiguan Station in the middle and lower reaches of the Yellow River Basin, and the prediction results are evaluated compared with those of CNN-LSTM, ELMAN, VMD-CNN-LSTM models. Research results show that the NSE values of the prediction results of this model are all greater than 0.99, which is superior to other models, indicating that the VMD-(CNN-LSTM, ELMAN) model has high prediction accuracy and can be applied to actual monthly runoff prediction of the basin.
查看全文  查看/发表评论  下载PDF阅读器
关闭