• ▶ 2008-2024年被中国情报信息研究所评价中心评为“中国科技核心期刊”
  • ▶ 2019-2024年连续三届被中国科学院文献情报中心中国科学引文数据库CSCD(核心库)收录
  • ▶ 2021、2023年入编北京大学图书馆《中文核心期刊要目总览》
  • ▶ 2020-2024连续四年入选《科技期刊世界影响力指数(WJCI)报告》
王 敬, 袁星芳, 韩 忠, 黄林显, 梁 浩, 邢立亭, 侯金霄.基于指标优选和模糊综合优化模型的地下水质量评价研究水资源与水工程学报[J].,2022,33(6):46-52
基于指标优选和模糊综合优化模型的地下水质量评价研究
Groundwater quality assessment based on indicator selection and fuzzy comprehensive optimization model
  
DOI:10.11705/j.issn.1672-643X.2022.06.06
中文关键词:  地下水质量评价  Pearson相关系数  因子分析  模糊综合优化模型
英文关键词:groundwater quality assessment  Pearson correlation coefficient  factor analysis  fuzzy comprehensive optimization model
基金项目:国家自然科学基金项目(42272288);山东省自然科学基金项目(ZR2019MD029);山东省高校院所创新团队项目(2021GXRC070); 山东省第六地质矿产勘查院科研基金项目(801KY202004)
作者单位
王 敬1, 袁星芳1, 韩 忠1, 黄林显2,3, 梁 浩4, 邢立亭2,3, 侯金霄2 (1.山东省第六地质矿产勘查院 山东 威海 264209 2.济南大学 水利与环境学院 山东 济南 250022 3.山东省地下水数值模拟与污染控制工程技术研究中心 山东 济南 250022 4.山东省国土空间生态修复中心山东 济南 250014) 
摘要点击次数: 1040
全文下载次数: 471
中文摘要:
      进行地下水质量评价时往往需要较多的水质指标,一方面增加了取样和检测成本,另一方面容易引起评价过程中的重复描述,导致评价结果失真。通过利用Pearson相关系数(相关性)和因子分析(主控性)对水质评价指标进行优选,在此基础上结合模糊综合优化模型对2017年寿光市枯水期地下水质量状况进行评价。结果表明:通过将模糊综合评价和可变模糊集耦合,能够很好地解决水质等级划分的不确定性和模糊性,其评价结果也更加准确合理;利用指标优选将7个原始水质指标优选为4个指标,不但能够有效减少数据冗余,而且能够充分保留原始指标的有效信息,并且具有更高的评价合理性;在此基础上,识别出研究区地下水污染的主控指标为硝酸盐、总硬度、锌和COD;研究区内的蔬菜种植区地下水污染较为严重,其主要超标因子为硝酸盐和总硬度,主要是氮肥的过度使用及地表污染物通过河流进入地下水体逐渐累积的结果。
英文摘要:
      Groundwater quality assessment often requires a large number of water quality indicators, which not only increases the sampling and testing cost, but also easily causes repeated descriptions and distorted results. In this study, water quality indicators were optimized by Pearson correlation coefficient and factor analysis, and then the groundwater quality of Shouguang City in the dry season of 2017 was evaluated using the fuzzy comprehensive optimization model. The results show that by coupling fuzzy comprehensive evaluation with variable fuzzy sets, water quality categorization can be solved well and the results are more accurate and reasonable. Furthermore, the optimization of indicators reduced the original number down to four, which not only effectively reduced data redundancy, but also retained the effective information of the original indicators, and made it more plausible for the evaluation. On this basis, the main dominant indicators of groundwater pollution in the study area were identified as nitrate, total hardness, zinc and COD. In addition, the groundwater pollution in the vegetable growing area was aggravating, and its over-standard indicators were nitrate and total hardness, which were caused by the excessive use of nitrogen fertilizer and the gradual accumulation of surface pollutants entering the groundwater body through the river.
查看全文  查看/发表评论  下载PDF阅读器
关闭