• ▶ 2008-2024年被中国情报信息研究所评价中心评为“中国科技核心期刊”
  • ▶ 2019-2024年连续三届被中国科学院文献情报中心中国科学引文数据库CSCD(核心库)收录
  • ▶ 2021、2023年入编北京大学图书馆《中文核心期刊要目总览》
  • ▶ 2020-2024连续四年入选《科技期刊世界影响力指数(WJCI)报告》
陈奂良, 李常锁, 高 帅, 孙 斌, 林广奇.基于遗传算法优化BP神经网络的岩溶泉水位预测研究水资源与水工程学报[J].,2022,33(4):50-57
基于遗传算法优化BP神经网络的岩溶泉水位预测研究
Prediction of karst spring water level based on BP neural network optimized by genetic algorithm
  
DOI:10.11705/j.issn.1672-643X.2022.04.07
中文关键词:  岩溶泉水位预测  遗传算法  BP神经网络  训练方法  趵突泉
英文关键词:karst spring water level prediction  genetic algorithm  BP neural network  training method  Baotu Spring
基金项目:国家自然科学基金项目(41772257、41472216); 山东省自然科学基金项目(ZR2021QD084); 山东省地质矿产勘查开发局科研项目(KY2018003、KY201933、KY202108); 山东省地矿局八〇一水文地质工程地质大队(暨山东省地下水环境保护与修复工程技术研究中心)基金项目(801KY202001)
作者单位
陈奂良1,2,3, 李常锁1,2,3, 高 帅1,2,3, 孙 斌1,2,3, 林广奇1,2,3 (1.山东省地质矿产勘查开发局 八〇一水文地质工程地质大队 山东 济南 250014 2.山东省地下水环境保护与修复工程技术研究中心 山东 济南 250014 3.山东省地质矿产勘查开发局 地下水资源与环境重点实验室 山东 济南 250014) 
摘要点击次数: 918
全文下载次数: 413
中文摘要:
      我国北方岩溶大泉是集自然、文化和旅游等多种属性的重要自然资源,对北方岩溶地区经济社会发展有着重要的促进作用。为了精确预测岩溶泉的动态变化趋势,为岩溶泉资源保护提供支撑,基于2016-2018年趵突泉泉域的大气降水量、岩溶水开采量、人工生态补源量等数据,分别构建了6种BP神经网络以及采用遗传算法优化的BP神经网络预测模型,评价了不同预测模型对趵突泉水位的预测效果。研究表明:与BP神经网络相比,将GA算法得到的权值和阈值作为BP神经网络初始值可以很好地提高神经网络预测的稳定性,同时可以大大减少神经网络迭代次数,从而节省大量的计算成本;采用Levenberg-Marquardt训练方法的GA-BP(LM)网络模型具有稳定性高、计算成本低、预测误差小的特征,更适用于岩溶泉水位的预测。
英文摘要:
      Karst springs in north China are important natural resources with multiple attributes of landscape, culture and tourism, which play important roles in the development of local economy and society. Monitoring data of precipitation, groundwater withdrawal and artificial ecological recharge of Baotu Spring from 2016 to 2018 are collected for modelling purposes in order to achieve more accurate prediction results of dynamic changes of the karst spring. Meanwhile, 6 types of BP neural network and genetic algorithm optimized BP neural network are established to predict the water level of the Baotu Spring, and then the prediction results are compared and evaluated. The results show that the BP neural network optimized by genetic algorithm can improve the prediction stability, reduce the maximum iteration of neural network and save a great deal of calculation cost, compared to BP neural network. The GA-BP(LM) neural network which adopts Levenberg-Marquardt training method is more suitable for the prediction of karst spring water level due to its advantages of stable performance, low calculation cost and small prediction error. This research can provide references for the design and implementation of protection measures for karst springs in north China.
查看全文  查看/发表评论  下载PDF阅读器
关闭