• ▶ 2008-2024年被中国情报信息研究所评价中心评为“中国科技核心期刊”
  • ▶ 2019-2024年连续三届被中国科学院文献情报中心中国科学引文数据库CSCD(核心库)收录
  • ▶ 2021、2023年入编北京大学图书馆《中文核心期刊要目总览》
  • ▶ 2020-2024连续四年入选《科技期刊世界影响力指数(WJCI)报告》
王文川, 杨静欣, 臧红飞.基于WD-COA-LSTM模型的月降水量预测水资源与水工程学报[J].,2022,33(4):8-13
基于WD-COA-LSTM模型的月降水量预测
Monthly precipitation prediction based on WD-COA-LSTM model
  
DOI:10.11705/j.issn.1672-643X.2022.04.02
中文关键词:  月降水量预测  小波分解  郊狼优化算法  长短期记忆神经网络
英文关键词:monthly precipitation prediction  wavelet decomposition (WD)  coyote optimization algorithm (COA)  long short-term memory (LSTM) neural network
基金项目:河南省重点研发与推广专项(202102310259、202102310588);河南省高校科技创新团队(18IRTSTHN009)
作者单位
王文川, 杨静欣, 臧红飞 (华北水利水电大学 水资源学院 河南 郑州 450046) 
摘要点击次数: 1180
全文下载次数: 438
中文摘要:
      为进一步提高月降水量预测精度,提出了基于小波分解(WD)和郊狼优化(COA)算法的长短期记忆神经网络(LSTM)降水量预测模型(WD-COA-LSTM)。首先用小波分解对时间序列进行预处理,消除序列的非平稳性,得到1个低频序列和3个高频序列;然后通过郊狼优化算法对神经网络(LSTM)模型进行参数优化;最后将各子序列预测值叠加得到月降水量预测值。将提出的模型应用于洛阳市栾川县白土镇和洛宁县故县镇两个雨量站的月降水量预测中,并与LSTM、COA-LSTM、WD-LSTM模型预测结果进行对比。结果表明:提出的WD-COA-LSTM模型的预测精度最高,说明小波分解和郊狼优化算法能有效加强LSTM模型预测的精度和泛化能力,为月降水量的预测提供了一种新的途径。
英文摘要:
      In order to improve the prediction precision of monthly precipitation, the precipitation prediction model of WD-COA-LSTM is proposed based on wavelet decomposition (WD), coyote optimization algorithm (COA) and long short-term memory (LSTM) neural network. Firstly, the time series is preprocessed by WD to eliminate its non-stationarity, and a low-frequency sequence and three high-frequency sequences are obtained as the result. Then the parameters of the LSTM model are optimized by COA. Finally, the predicted monthly precipitation is obtained by superimposing the predicted values of each subsequence. The proposed model was applied to the monthly precipitation prediction of Baitu Town in Luanchuan County and Guxian Town in Luoning County, Luoyang City, and the results were then compared with those of the LSTM, COA-LSTM and WD-LSTM models. It is found that the proposed WD-COA-LSTM model produced the highest prediction accuracy, indicating that WD and COA can improve the precision and generalization ability of LSTM model. This model provides a new approach for the prediction of monthly precipitation.
查看全文  查看/发表评论  下载PDF阅读器
关闭