• ▶ 2008-2024年被中国情报信息研究所评价中心评为“中国科技核心期刊”
  • ▶ 2019-2024年连续三届被中国科学院文献情报中心中国科学引文数据库CSCD(核心库)收录
  • ▶ 2021、2023年入编北京大学图书馆《中文核心期刊要目总览》
  • ▶ 2020-2024连续四年入选《科技期刊世界影响力指数(WJCI)报告》
郝福亮, 王 旭.数值集合降雨预测的校正后处理方法研究水资源与水工程学报[J].,2022,33(2):108-114
数值集合降雨预测的校正后处理方法研究
Post-processing method of numerical ensemble rainfall prediction
  
DOI:10.11705/j.issn.1672-643X.2022.02.14
中文关键词:  集合预测系统  统计后处理  降雨预测  偏差订正  数值模式  雅砻江流域
英文关键词:ensemble forecast system  statistical post-processing technology  rainfall prediction  bias correction  numerical modelling form  the Yalong River Basin
基金项目:国家自然科学基金项目(52079144)
作者单位
郝福亮1,2, 王 旭3 (1.长沙理工大学 水利与环境工程学院 湖南 长沙 410114 2.水沙科学与水灾害防治湖南省重点实验室湖南 长沙 410114 3.天津大学 环境科学与工程学院 天津 300072) 
摘要点击次数: 755
全文下载次数: 364
中文摘要:
      利用2017年4月1日-9月30日全球集合预测系统的降雨预测数据和雅砻江流域气象站点的降雨观测数据,采用基于左删失广义极值分布的集合模式输出统计方法对流域内降雨预测进行校正,对比分析该方法两种建模形式在校正结果上的差异。结果表明:采用集合成员均值校正的方式可以有效改善原始预测对于降雨过分高估的问题,其预测结果明显优于采用集合成员校正方式的预测结果,后者由于模型参数增加而出现过度拟合问题,限制了其在雅砻江流域中的应用。另外采用集合成员均值校正方式的预测结果的准确性在不同流域范围存在明显差异并倾向低估流域内较大降雨量,因此在后续的研究中需要进一步针对该方法无法对极值降雨量进行准确预测的问题进行改进。
英文摘要:
      Using the rainfall prediction data of the Global Ensemble Forecast System from April 1 to September 30, 2017 and the rainfall observation data from the meteorological stations in the Yalong River Basin, the rainfall prediction data was calibrated by the ensemble model output statistics based on the generalized extreme value distribution, and the calibration results obtained from two models were compared and analyzed. The results show that the ensemble member mean calibration model can effectively address the problem of rainfall overestimation, which is always the case with the original prediction model. Furthermore, its prediction result is significantly better than that of the ensemble member calibration model, which is limited by the over-fitting problem due to the increase of model parameters, thus the latter is not applicable to the rainfall prediction of the Yalong River Basin. However, the accuracy of the prediction results of the ensemble member mean calibration model varies significantly in different basins and tends to underestimate the large rainfalls in the basin. Therefore, further research on this method should be conducted targeting at improving the prediction accuracy of extreme rainfalls.
查看全文  查看/发表评论  下载PDF阅读器
关闭