• ▶ 2008-2024年被中国情报信息研究所评价中心评为“中国科技核心期刊”
  • ▶ 2019-2024年连续三届被中国科学院文献情报中心中国科学引文数据库CSCD(核心库)收录
  • ▶ 2021、2023年入编北京大学图书馆《中文核心期刊要目总览》
  • ▶ 2020-2024连续四年入选《科技期刊世界影响力指数(WJCI)报告》
门宝辉, 李 晨, 尹世洋.基于偏联系数的地下水开采强度动态评价研究水资源与水工程学报[J].,2022,33(1):22-30
基于偏联系数的地下水开采强度动态评价研究
Dynamic evaluation of groundwater exploitation intensity based on partial connection number
  
DOI:10.11705/j.issn.1672-643X.2022.01.04
中文关键词:  地下水开采强度  偏联系数  时空分布  动态评价
英文关键词:groundwater exploitation intensity  partial connection number  spatial and temporal distribution  dynamic evaluation
基金项目:中央高校基本科研业务费专项资金项目(2019MS028); 国家“十三五”重点研发计划专题(2016YFC0401406)
作者单位
门宝辉, 李 晨, 尹世洋 (华北电力大学 水利与水电工程学院 北京 102206) 
摘要点击次数: 967
全文下载次数: 387
中文摘要:
      为减少人类活动对地下水环境的影响,实现地下水资源可持续利用,需从时空尺度上对地下水开采强度进行动态评价。基于集对分析构建了地下水开采强度时空动态评价模型,并基于二阶偏联系数挖掘了同一度、差异度、对立度的动态演化过程,识别了影响地下水开采强度等级的主要因素。结果表明: 2006-2016年,北京市大兴区地下水开采强度趋于增大,空间分布上中部地区>南部地区>北部地区;人口数、工业产值、第三产业产值对地下水开采强度等级影响的时空分布特征为北部地区>中部地区>南部地区。农业种植面积、机井数对地下水开采强度等级影响的时空分布特征为南部地区>中部地区>北部地区。依据二阶偏联系数识别结果,人口数、工业产值、第三产业产值对地下水开采强度的影响程度在增强,农业种植面积、机井数对地下水开采强度的影响程度在减弱。本文构建的地下水开采强度时空动态评价模型能够较好地反映研究区的地下水开采强度等级及动态演化过程,且计算简便,有一定的应用推广价值。
英文摘要:
      In order to reduce the impact of human activities on groundwater and realize the sustainable utilization of groundwater resources, it is necessary to dynamically evaluate the groundwater exploitation intensity from spatial and temporal perspectives. Based on set pair analysis, a spatiotemporal dynamic evaluation model was established, and the dynamic evolution process of the degree of identity, degree of discrepancy and degree of contrary was discussed based on the second order partial connection number, by which the main factors affecting the exploitation intensity were identified. The results show that the groundwater exploitation intensity in Daxing District kept increasing from 2006 to 2016, and central region > southern region > northern region on the spatial distribution. The spatial and temporal distribution characteristics of the intensity level influenced by the population, industrial output value and tertiary industry output value were ranked as follows: northern region > central region > southern region, and that by the agricultural planting area and number of wells were southern region > central region > northern region. According to the identification results of the second order partial connection number, the influence of the population, industrial output value and tertiary industry output value were improving, but that of the agricultural planting area and number of wells were weakening. The spatiotemporal dynamic evaluation model constructed in this paper can accurately reflect the groundwater exploitation intensity level and its dynamic evolution process in the study area, and the calculation is simple, so it is worth popularizing.
查看全文  查看/发表评论  下载PDF阅读器
关闭