• ▶ 2008-2024年被中国情报信息研究所评价中心评为“中国科技核心期刊”
  • ▶ 2019-2024年连续三届被中国科学院文献情报中心中国科学引文数据库CSCD(核心库)收录
  • ▶ 2021、2023年入编北京大学图书馆《中文核心期刊要目总览》
  • ▶ 2020-2024连续四年入选《科技期刊世界影响力指数(WJCI)报告》
王海军, 许 松, 陆建宏, 任保瑞.基于AVMD和BSA-KELM的水电站厂房结构振动预测研究水资源与水工程学报[J].,2020,31(6):168-173
基于AVMD和BSA-KELM的水电站厂房结构振动预测研究
Structural vibration prediction of hydropower plant buildings based on AVMD and BSA-KELM
  
DOI:10.11705/j.issn.1672-643X.2020.06.26
中文关键词:  水电站厂房  振动预测  自适应模态分解  核极限学习机  鸟群算法
英文关键词:hydropower plant building  vibration prediction  adapative variational mode decomposition(AVMD)  kernel extreme learning machine(KELM)  bird swarm algorithm(BSA)
基金项目:国家重点研发计划项目(2016YFC0401901);天津市自然科学基金项目(18JCYBJC22300)
作者单位
王海军1,2, 许 松1,2, 陆建宏3, 任保瑞3 (1.天津大学 水利工程仿真与安全国家重点实验室 天津 300350 2.天津大学 建筑工程学院天津 300350 3.雅砻江流域水电开发有限公司二滩水力发电厂 四川 攀枝花 617000) 
摘要点击次数: 999
全文下载次数: 447
中文摘要:
      针对水电站厂房结构振动安全监测问题,结合智能学习算法,提出了一种基于AVMD和BSA-KELM的水电站厂房结构振动响应预测方法,为实现厂房结构振动智能化监测提供了一种新的思路。首先采用AVMD方法将振动信号分解为多阶IMF分量;然后对各阶IMF分量分别建立KELM预测模型,模型参数采用BSA优化算法选取;最后通过信号重构得到结构预测振动时程曲线。将该方法应用于某实际水电站工程,以机组和水压脉动原型观测信号作为输入,以水电站厂房结构振动信号作为输出,建立了预测模型,预测信号与测试信号对比结果表明:测点预测结果决定系数均大于0.8,振动幅值均方根误差均小于0.3 μm、平均绝对误差均小于0.2 μm,证明该方法预测精度较高,预测效果良好。
英文摘要:
      Aiming at the vibration safety of hydropower stations, a prediction method based on AVMD(adapative variational mode decomposition) and BSA-KELM(bird swarm algorithm-kernel extreme learning machine) was proposed to study the vibration response of the plant structure combined with the intelligent learning algorithm, which shed some light on the intelligent monitoring of structural vibration. Firstly, the vibration signals were decomposed into multi-order IMF(intrinsic mode function) components using AVMD. Then the KELM prediction model was established for each IMF component, and the model parameters were optimized by BSA optimization algorithm. Finally, the structural vibration time-history curves were obtained through the reconstruction of the vibration signals. Based on the prototype observation data, the prediction model of a hydropower station was established using this method, with the signals of the generator and water pressure pulsation as the input and the signals of hydropower plant structure vibration as the output. Compared with the test signals, the determination coefficients of the prediction results were all greater than 0.8, the root mean square errors of the vibration amplitude were all less than 0.3 μm, and the average absolute errors were all less than 0.2 μm, indicating that the prediction method has high accuracy and excellent performance.
查看全文  查看/发表评论  下载PDF阅读器
关闭