• ▶ 2008-2024年被中国情报信息研究所评价中心评为“中国科技核心期刊”
  • ▶ 2019-2024年连续三届被中国科学院文献情报中心中国科学引文数据库CSCD(核心库)收录
  • ▶ 2021、2023年入编北京大学图书馆《中文核心期刊要目总览》
  • ▶ 2020-2024连续四年入选《科技期刊世界影响力指数(WJCI)报告》
周有荣, 崔东文.基于混合核SHTS-SVM的年径流预测水资源与水工程学报[J].,2019,30(3):66-72
基于混合核SHTS-SVM的年径流预测
Annual runoff prediction based on mixed kernel simultaneous heat transfer search-support vector machine
  
DOI:10.11705/j.issn.1672-643X.2019.03.10
中文关键词:  径流预测  同热传递搜索算法  混合核函数  支持向量机  参数优化  仿真验证
英文关键词:runoff forecasting  simultaneous heat transfer search(SHTS) algorithm  mixed kernels  support vector machine(SVM)  parameter optimization  simulation verification
基金项目:
作者单位
周有荣1, 崔东文2 (1.临沧润汀水资源科技服务有限公司 云南 临沧 677000 2.云南省文山州水务局 云南 文山 663000) 
摘要点击次数: 1460
全文下载次数: 712
中文摘要:
      为提高年径流预测精度,利用同热传递搜索(SHTS)算法对混合核支持向量机(SVM)关键参数和混合权重系数进行优化,提出混合核SHTS-SVM年径流预测模型。通过6个不同维度的标准测试函数对SHTS算法进行仿真验证,并与当前寻优效果较好的教学优化(TLBO)算法、灰狼优化(GWO)算法进行对比验证。利用两个年径流预测算例对混合核SHTS-SVM模型进行实例验证,并与多项式核SHTS-SVM、高斯核SHTS-SVM及SHTS-BP模型预测结果进行对比。结果表明:SHTS算法寻优精度优于TLBO、GWO优化算法,具有较好的极值寻优能力和稳健性能。混合核SHTS-SVM模型综合了多项式全局核函数和高斯局部核函数二者优点,在预测精度、泛化能力等方面均优于对比模型,具有较好的实际应用价值。
英文摘要:
      In order to improve the accuracy of annual runoff prediction, the simultaneous heat transfer search (SHTS) algorithm was used to optimize the key parameters and the mixed weight coefficients of hybrid nuclear support vector machine (SVM). A mixed kernel SHTS-SVM annual runoff prediction model was proposed. The SHTS algorithm was verified by six standard test functions at different dimensions, and verified with the teaching optimization (TLBO) algorithm and gray wolf optimization (GWO) algorithm. Two of the annual runoff prediction examples were used to verify the mixed kernel SHTS-SVM model and compared with the prediction results of polynomial kernel SHTS-SVM, Gaussian kernel SHTS-SVM and SHTS-BP models. The results showed that the optimization accuracy of SHTS algorithm is better than the TLBO and GWO optimization algorithms, and it has better extreme value searching ability and robust performance. The mixed kernel SHTS-SVM model combines the advantages of the polynomial global kernel function and the Gaussian local kernel function. It is superior to the comparison model in terms of prediction accuracy, generalization ability and so on, and has good practical application value.
查看全文  查看/发表评论  下载PDF阅读器
关闭