• ▶ 2008-2024年被中国情报信息研究所评价中心评为“中国科技核心期刊”
  • ▶ 2019-2024年连续三届被中国科学院文献情报中心中国科学引文数据库CSCD(核心库)收录
  • ▶ 2021、2023年入编北京大学图书馆《中文核心期刊要目总览》
  • ▶ 2020-2024连续四年入选《科技期刊世界影响力指数(WJCI)报告》
李晓英,苏志伟,田佳乐,郑景耀.基于GRA-MEA-BP耦合模型的城市需水预测研究水资源与水工程学报[J].,2018,29(1):50-54
基于GRA-MEA-BP耦合模型的城市需水预测研究
Research on GRA-MEA-BP coupling model for water demand prediction
  
DOI:10.11705/j.issn.1672-643X.2018.01.08
中文关键词:  灰色关联分析  BP神经网络  思维进化算法  耦合模型  需水量预测
英文关键词:grey relational analysis  BP neutral network  mind evolutionary algorithm  coupling model  water demand prediction
基金项目:国家重点计划研发课题(2016YFC0400909、2016YFC0402605);江苏省高校优势学科建设工程项目(水利工程);水利部黄河泥沙重点实验室开放课题基金项目(2017003)
作者单位
李晓英,苏志伟,田佳乐,郑景耀 (河海大学 水利水电学院 江苏 南京 210098) 
摘要点击次数: 2993
全文下载次数: 1093
中文摘要:
      针对城市需水量影响因子多、BP神经网络收敛速度慢、精度低、易陷入局部最优等问题,提出灰色关联分析、思维进化算法、BP神经网络三者耦合的改进预测模型,利用灰色关联分析(GRA)筛选需水量主要影响因子,采用全局搜索能力极强的思维进化算法(MEA)优化BP神经网络的权值和阈值,从而构建GRA-MEA-BP耦合需水预测模型,同时建立BP神经网络模型作为对比。实例应用结果表明,GRA-MEA-BP耦合模型具有更高的预测精度和预测速度,可作为一种有效的需水预测模型。
英文摘要:
      In order to solve the problem of multiple impact factors of urban water demand, slow convergence speed of BP neural network, low precision and easily falling into local optimum, this paper proposes an improved forecasting model based on the combination of grey relational analysis, mind evolutionary algorithm (MEA) and back propagation neural network (BPNN). grey relational analysis was adopted to select the main factors that influence the water requirement, and the weights and threshold values of BP neural network was optimized by using mind evolutionary algorithm (MEA) which has a strong global search ability to build the GRA-MEA-BP water demand forecast coupling model. And BP neural network model was established for comparison as well. The application results show that the GRA-MEA-BP coupling model has higher prediction accuracy and prediction speed. Thus, it can be used as an effective model for water demand forecasting.
查看全文  查看/发表评论  下载PDF阅读器
关闭