• ▶ 2008-2024年被中国情报信息研究所评价中心评为“中国科技核心期刊”
  • ▶ 2019-2024年连续三届被中国科学院文献情报中心中国科学引文数据库CSCD(核心库)收录
  • ▶ 2021、2023年入编北京大学图书馆《中文核心期刊要目总览》
  • ▶ 2020-2024连续四年入选《科技期刊世界影响力指数(WJCI)报告》
万智巍, 贾玉连, 洪祎君, 蒋梅鑫.集合经验模态分解和交叉小波在赣江流量与太阳黑子活动关系中的应用水资源与水工程学报[J].,2018,29(1):44-49
集合经验模态分解和交叉小波在赣江流量与太阳黑子活动关系中的应用
Application of EEMD and CWT in the relationship between Ganjiang River flow and sunspot activity
  
DOI:10.11705/j.issn.1672-643X.2018.01.07
中文关键词:  集合经验模态分解  交叉小波变换  流量  太阳黑子  赣江
英文关键词:ensemble empirical mode decomposition(EEMD)  cross wavelet transform(CWT)  flow  sunspot  Ganjiang River
基金项目:国家自然科学基金项目(41761045); 鄱阳湖湿地与流域研究教育部重点实验室开放基金项目(PK2015003); 江西省自然科学基金项目(20161BAB213075);江西省重大生态安全问题监控协同创新中心项目(JXS-EW-00); 江西省教育厅科学技术研究项目(GJJ150305); 江西师范大学博士启动基金项目(6902)
作者单位
万智巍1, 贾玉连1, 洪祎君2, 蒋梅鑫1 (1.江西师范大学 地理与环境学院 鄱阳湖湿地与流域研究教育部重点实验室江西 南昌 3300222.中国科学院地理科学与资源研究所 陆地表层格局与模拟院重点实验室 北京 100101) 
摘要点击次数: 2133
全文下载次数: 1141
中文摘要:
      为解决传统相关分析方法难以揭示出非线性、非平稳水文序列与外部强迫因子之间在不同时间尺度、不同频域下的相关关系,提出一种结合EEMD(集合经验模态分解)和CWT(交叉小波变换)的综合分析方法,并将其应用于赣江长时间流量序列与同期太阳黑子数序列的多尺度相关分析之中。研究结果表明:1950-2015年赣江流量序列EEMD分解的IMF1分量的波动振幅最大,频率最高,代表了原始序列中的主要变化因素,是水文序列非线性和非平稳特征的体现。同期太阳黑子数序列的EEMD分解结果表明:1950-1970年为太阳黑子数上升阶段,1970-2015年为下降阶段。CWT分析表明,在11a周期尺度上赣江流量与太阳黑子数之间由负相关逐渐顺时针转为相差1/4个周期,再转为正相关。其中1950-2000年,二者的相关系数在0.6以上,2001-2015年相关系数在0.4以上。结果表明EEMD-CWT综合分析可以有效利用EEMD方法将原始信号进行分解,以得到具有平稳性的IMF分量,并以此为基础通过CWT方法得到二者在时域和频域上的相关关系变化过程。该方法可以为探究相关水文气象序列与外部强迫因素之间的多尺度相关关系提供新的思路和技术手段。
英文摘要:
      In order to solve the problem that traditional correlation analysis method is difficult to reveal the correlation between non-linear and non-stationary hydrological sequences and external forcing factors in different time scales and different frequency domains, we proposed a new method which is the combination of EEMD and CWT to be applied to the multi-scale correlation analysis of the long term flow series of Ganjiang River and the sunspot series in the same period. The results showed that the IMF1 component of the EEMD decomposition of the Ganjiang River flow series from 1950 to 2015 has the maximum amplitude and the highest frequency, representing the main change factor in the original series, which is the embodiment of the nonlinear and nonstationary characteristics of the hydrological sequence. The results of the EEMD components of the sunspot series in the same period showed that from 1950 to 1970 the sunspot increased and then decreased from 1970 to 2015. CWT analysis showed that the correlation between the Ganjiang River flow and the sunspot series gradually shifted from the negative correlation to the 1/4 cycle lag and then to the positive correlation. From 1950 to 2000, the correlation coefficient of this two series was above 0.6, and the correlation coefficient was above 0.4 from 2001 to 2015. This study shows that the EEMD-CWT comprehensive analysis can effectively use the EEMD method to decompose the original signal to obtain the IMF components with stability. Based on this, the correlation between the two series in the time domain and the frequency domain can be obtained by the CWT method. This method can provide new ideas and technical means for exploring the multi-scale correlation between hydrological meteorological series and external forcing factors.
查看全文  查看/发表评论  下载PDF阅读器
关闭