• ▶ 2008-2024年被中国情报信息研究所评价中心评为“中国科技核心期刊”
  • ▶ 2019-2024年连续三届被中国科学院文献情报中心中国科学引文数据库CSCD(核心库)收录
  • ▶ 2021、2023年入编北京大学图书馆《中文核心期刊要目总览》
  • ▶ 2020-2024连续四年入选《科技期刊世界影响力指数(WJCI)报告》
胡林凯.基于WCA-MEPP模型的云南省水资源利用效率动态评价水资源与水工程学报[J].,2017,28(4):75-81
基于WCA-MEPP模型的云南省水资源利用效率动态评价
Dynamic evaluation of water resources utilization efficiency in Yunnan Province based on WCA-MEPP model
  
DOI:10.11705/j.issn.1672-643X.2017.04.13
中文关键词:  水资源利用效率  最大熵投影寻踪  指标体系  水循环算法  生物地理优化算法  差分进化算法  粒子群优化算法  云南省
英文关键词:water resources use efficiency  maximum entropy projection pursuit  index system  water cycle algorithm  biogeography-based optimization algorithm  differential evolution algorithm  particle swarm optimization algorithm  Yunnan Province
基金项目:
作者单位
胡林凯 云南省水文水资源局文山分局 云南 文山 663000 
摘要点击次数: 2121
全文下载次数: 906
中文摘要:
      以云南省2006-2015年及2020年水资源利用效率评价为例,从综合、工业、农业、生活和生态5个方面遴选15个指标构建水资源利用效率评价指标体系和分级标准,基于最大熵投影寻踪(MEPP)技术进行区域水资源利用效率动态评价。采用在指标分级标准阈值间随机生成样本的方法构造MEPP目标函数,利用水循环算法(WCA)优化MEPP最佳投影方向,建立WCA-MEPP水资源利用效率评价模型,并分别构建生物地理优化(BBO)算法、差分进化(DE)算法和粒子群优化(PSO)算法-MEPP水资源利用效率评价模型作对比模型。结果表明:(1)WCA寻优MEPP目标函数获得的最优值、最劣值、平均值和标准差均优于BBO、DE和PSO算法,具有较好的全局极值寻优能力。(2)WCA-MEPP模型对云南省2006-2007年水资源利用效率评价为“较低水平”,2008-2015年评价为“中等水平”,2020年评价为“较高水平”。2006-2015年间云南省水资源利用效率随时间呈提升趋势,且提升趋势显著。(3)WCA-MEPP模型对云南省水资源利用效率评价结果与BBO-MEPP模型相同,但在排序上存在差异;与DE-MEPP、PSO-MEPP模型在评价结果及排序上均存在差异。
英文摘要:
      Taking the evaluation of water resources use efficiency in Yunnan Province from 2006 to 2015 and 2020 as an example,15 indicators were selected from aspects of comprehensiveness, industry, agriculture, life and ecology to construct the evaluation index system and grading standard of water resources utilization efficiency, and the dynamic evaluation of regional water resources utilization efficiency was conducted based on maximum entropy projection pursuit (MEPP). The MEPP objective function was constructed by randomly generating the samples between the thresholds of the target classification criteria, and the optimal projection direction of the MEPP was optimized by using the water cycle algorithm (WCA). The WCA-MEPP water resource utilization efficiency evaluation model was proposed, and the biogeographic optimization (BBO) Algorithm, differential evolution (DE) algorithm and particle swarm optimization (PSO) algorithm - MEPP water use efficiency evaluation model were established. The results show that: (1)the optimal value, the worst value , the average value and the standard deviation of WCA-based optimal MEPP are better than those of BBO, DE and PSO, and have the best global extreme value optimization ability y. (2)WCA-MEPP model evaluates the water use efficiency of Yunnan Province as "low level" from 2006 to 2007 and "medium level" from 2008 to 2015, and "high level" in 2020. From 2006 to 2015, the water use efficiency of Yunnan Province increased with the time, and the trend of upgrading was remarkable. (3)the WCA-MEPP model has the same results as the BBO-MEPP model, but the rankings are different in the WCA-MEPP model. There are differences in the evaluation results and ranking between the DE-MEPP model and the PSO-MEPP model.
查看全文  查看/发表评论  下载PDF阅读器
关闭