• ▶ 2008-2024年被中国情报信息研究所评价中心评为“中国科技核心期刊”
  • ▶ 2019-2024年连续三届被中国科学院文献情报中心中国科学引文数据库CSCD(核心库)收录
  • ▶ 2021、2023年入编北京大学图书馆《中文核心期刊要目总览》
  • ▶ 2020-2024连续四年入选《科技期刊世界影响力指数(WJCI)报告》
苏敏杰,白栩嘉.文化算法与投影寻踪融合模型在相似流域优选中的应用水资源与水工程学报[J].,2017,28(4):64-69
文化算法与投影寻踪融合模型在相似流域优选中的应用
Application of fusion model of cultural algorithm and projection pursuit mode in optimization of similar watershed
  
DOI:10.11705/j.issn.1672-643X.2017.04.11
中文关键词:  相似流域优选  投影寻踪  文化算法  差分进化算法  和声搜索算法  粒子群优化算法
英文关键词:similar river optimization  projection pursuit  cultural algorithms  differential evolution algorithm  harmony search method  particle swarm optimization
基金项目:国家水体污染控制与治理科技重大专项(201307012-006-01); 院士工作站建设专项(2015IC013)
作者单位
苏敏杰,白栩嘉 云南省水利水电勘测设计研究院, 云南 昆明 650021 
摘要点击次数: 1829
全文下载次数: 763
中文摘要:
      研究文化算法(CA)与投影寻踪(PP)融合模型应用于相似流域优选中的可行性和有效性。以12个小河站控制流域优选为例,建立CA-PP相似流域优选模型,并构建差分进化(DE)算法-PP、和声搜索(HS)算法-PP和粒子群优化(PSO)算法-PP作为对比模型,将优选结果与随机分析法、集对分析法、模糊分析法、灰色分析法的优选结果进行比较。结果表明:CA寻优PP目标函数获得的最优值、最劣值、平均值和标准差均优于DE、HS和PSO算法,具有较好的全局极值寻优能力和收敛稳定性能。CA-PP模型对相似流域的优选结果与DE-PP、HS-PP和PSO-PP模型,以及随机分析法、集对分析法、模糊分析法、灰色分析法的优选结果相同,但在优选顺序上存在差异。CA-PP模型用于相似流域优选是可行和有效的,可为同类优选提供新的途径和方法。
英文摘要:
      This article studies the feasibility and effectiveness of the fusion model of cultural algorithm (CA) and projection pursuit (PP) in similar watershed optimization . Based on the optimization of the control catchment of the 12 river stations, this article presents a CA-PP similarity basin optimization model and constructs a differential evolution (DE) algorithm-PP, a harmony search (HS) algorithm-PP and a particle swarm optimization (PSO) algorithm-PP as a contrast model, the optimal results are compared with the optimal results of stochastic analysis, set pair analysis, fuzzy analysis and gray analysis. The results show that the optimal value, the worst value, the mean value and the standard deviation obtained by CA-PP are better than those of the DE, HS and PSO algorithms, and they have better global optimal value and convergence stability. The result of CA-PP model is similar to that of DE-PP, HS-PP and PSO-PP, and the results of random analysis, set pair analysis, fuzzy analysis and gray analysis are the same, but there are differences in the optimization sequence. The CA-PP model is feasible and effective for similar watershed optimization, and it can provide new approaches and methods for similar optimization.
查看全文  查看/发表评论  下载PDF阅读器
关闭