• ▶ 2008-2024年被中国情报信息研究所评价中心评为“中国科技核心期刊”
  • ▶ 2019-2024年连续三届被中国科学院文献情报中心中国科学引文数据库CSCD(核心库)收录
  • ▶ 2021、2023年入编北京大学图书馆《中文核心期刊要目总览》
  • ▶ 2020-2024连续四年入选《科技期刊世界影响力指数(WJCI)报告》
赵太飞, 谷伟豪, 段延峰.农村居民用水行为的识别方法水资源与水工程学报[J].,2016,27(4):70-74
农村居民用水行为的识别方法
Recognition method of water behavior for residents in rural area
  
DOI:10.11705/j.issn.1672-643X.2016.04.13
中文关键词:  居民用水  行为识别  HMM模型  BP神经网络
英文关键词:residential water  behavior recognition  HMM model  BP neural network
基金项目:国家自然科学基金项目(61001069); 西安市科技计划项目 (CXY1435(4))
作者单位
赵太飞1, 谷伟豪1, 段延峰2 (1.西安理工大学 自动化与信息工程学院 陕西 西安 710048 2.户县农村供水管理中心 陕西 西安 710300) 
摘要点击次数: 1909
全文下载次数: 916
中文摘要:
      实时准确地识别居民用水行为对制定有效的家庭用水需求管理策略、提高用水安全、改善当前水基础设施的规划和管理有重要的研究意义。针对每个用水事件的流量特点,通过分析几种典型的居民用水行为,提出了两种居民用水行为识别方法。分别利用HMM和BP神经网络建立不同类型居民用水行为的识别模型,对居民用水行为进行实时而有效的识别。这两种方法首先从训练集合中提取不同用水行为的流量特征、并建立该行为的参考模型,然后从测试集合中提取用水行为的流量特征和已设置的参考模型进行匹配,得出识别结果,最后对两种识别方法的结果进行了对比分析。可以得出两个结论:在不同流量模式用水事件下,HMM模型比BP神经网络的识别准确度高6%左右;在相似流量模式用水事件下,BP神经网络比HMM模型的识别准确度高约6%。
英文摘要:
      It is very important to timely and accurately identify the water behavior of residents for developing effective household water demand management strategy,enhancing water security and improving the current planning and management of water infrastructure.Aiming at the water flow characteristics each event, the paper proposed two recognition methods of residential water behavior through the analysis of several typical residential water behaviors. It established the model of behavior recognition of different types of residents by using HMM and BP neural network and achieved the real-time effective recognition of residential water behavior.These two methods were extracted from the training set of water flow characteristics of different behavior and a reference model of the behavior was established.Then the water flow characteristics extracted from the set of test were matched to the reference model and obtained the recognition results.Finally,it compared and analyzed the results of two identification methods.The result concluded that under the water event of different traffic patterns,the identification accuracy of HMM is about 6% higher than that of BP neural network model.Under the water event of similar traffic patterns,the identification accuracy of BP neural network model is about 6% higher that of HMM.
查看全文  查看/发表评论  下载PDF阅读器
关闭