• ▶ 2008-2024年被中国情报信息研究所评价中心评为“中国科技核心期刊”
  • ▶ 2019-2024年连续三届被中国科学院文献情报中心中国科学引文数据库CSCD(核心库)收录
  • ▶ 2021、2023年入编北京大学图书馆《中文核心期刊要目总览》
  • ▶ 2020-2024连续四年入选《科技期刊世界影响力指数(WJCI)报告》
白 云, 谢晶晶, 王晓雪, 李 川.基于多尺度相关向量机的城市日用水量预测水资源与水工程学报[J].,2016,27(3):39-42
基于多尺度相关向量机的城市日用水量预测
Forecast of urban daily water consumption based on multi-scale relevance vector machine
  
DOI:10.11705/j.issn.1672-643X.2016.03.08
中文关键词:  多尺度  相关向量机  日用水量预测  小波逆变换  重庆市
英文关键词:multi-scale  relevance vector machine  daily water consumption forecast  inverse wavelet transform  Chongqing City
基金项目:安徽高校自然科学研究重点项目(KJ2016A168); 安徽科技学院校级重点学科建设(AKZDXK2015B01); 教育部留学回国人员科研启动基金(教外司留[2013]693号); 重庆市研究生教育教学改革研究项目(yjg143015)
作者单位
白 云1a, 谢晶晶1b, 王晓雪2, 李 川3 (1.安徽科技学院 a.建筑学院
b.资源与环境学院
安徽 233100 2.重庆市南岸区环境监测站 重庆 400060 3.重庆工商大学 装备系统服役健康保障国际联合研究中心 重庆 400067) 
摘要点击次数: 2187
全文下载次数: 1089
中文摘要:
      为提高日用水量预测精度,提出一种基于多尺度相关向量机的预测模型。通过静态小波分解将用水量非平稳时间序列分解为不同尺度的平稳时间序列,然后在分解后的各子序列分别建立相关向量机回归模型进行预测,最后通过小波逆变换将各子序列预测结果整合得出原始用水量时间序列的预测值。在实例分析中分别利用多尺度关联向量机模型和单尺度相关向量机预测模型对实际用水量进行预测分析。结果表明,前者具有更高的预测精度,可应用于城市日用水量的预测。
英文摘要:
      In order to improve the forecast precision of daily water consumption,the paper proposed a forecast model based on multi-scale relevance vector machine (MSRVM). The non-stationary time series of daily water consumption are decomposed into different scales stationary time series by stationary wavelet transform.Then it established the regression model of relevance vector machine in each scale to predict respectively,and finally employed the forecast results of the RVM outputs at all the scales to reconstruct the forecast value of the original daily water consumption time series through the inverse wavelet transform. Application examples show that compared with mono-scale RVM model, the MSRVM model has the better precision and can be applied in the forecast of daily water consumption.
查看全文  查看/发表评论  下载PDF阅读器
关闭