• ▶ 2008-2024年被中国情报信息研究所评价中心评为“中国科技核心期刊”
  • ▶ 2019-2024年连续三届被中国科学院文献情报中心中国科学引文数据库CSCD(核心库)收录
  • ▶ 2021、2023年入编北京大学图书馆《中文核心期刊要目总览》
  • ▶ 2020-2024连续四年入选《科技期刊世界影响力指数(WJCI)报告》
孙 艳, 刀海娅.自适应变异粒子群算法与支持向量机在农业用水预测中的应用水资源与水工程学报[J].,2015,26(3):231-236
自适应变异粒子群算法与支持向量机在农业用水预测中的应用
Application of AVPSO-SVR and support vector machine to agricultural water prediction
  
DOI:10.11705/j.issn.1672-643X.2015.03.048
中文关键词:  需水预测  自适应变异  粒子群算法  遗传算法  支持向量机  神经网络
英文关键词:water demand prediction  adaptive variation  particle swarm optimization  genetic algorithm  support vector machine  neural network
基金项目:
作者单位
孙 艳, 刀海娅 (云南省水利水电勘测设计研究院 云南 昆明 650021) 
摘要点击次数: 1563
全文下载次数: 932
中文摘要:
      为提高农业用水预测精度以及改善基本粒子群算法(PSO)的收敛性能,提出基于自适应变异(Adaptive Variation,AV)算法改进的PSO-SVR多元变量农业用水预测模型,以2000-2011年全国农业用水量预测为例进行实例研究。首先,选用3个典型函数测试AVPSO算法性能,并与基本PSO算法比较;其次选取粮食作物播种面积、水灾成灾面积等4个指标作为农业用水预测的影响因子,采用AVPSO算法优化SVR惩罚因子C和核函数参数g,构建AVPSO-SVR农业用水预测模型,并构建基本PSO-SVR、GA-SVR、GA-BP和传统BP模型作为对比模型;最后,利用实例前8年和后4年资料分别对各模型进行训练和预测。结果表明:①AVPSO算法的全局搜索能力有了明显提高,有效避免了早熟收敛问题。②AVPSO-SVR模型对实例后4年农业用水量预测的平均相对误差绝对值和最大相对误差绝对值分别为0.48%、0.78%,预测精度及泛化能力均优于PSO-SVR、GA-SVR、GA-BP和传统BP模型,AVPSO算法能有效对SVR惩罚因子C和核函数参数g进行寻优。
英文摘要:
      Order to improve agricultural water precision and improve the basic particle swarm optimization (PSO) convergence performance, the paper proposed PSO-SVR multivariate agricultural water prediction model based on the adaptive mutation (Adaptive Variation, AV).It took national agricultural water consumption forecast as a case study from 2000 to 2011. First of all, it selected 3 typical function test the performance of AVPSO algorithm, and compared with the basic PSO algorithm; secondly choose 4 influence factors such as grain crops sown area, the flood area as that of agricultural water forecast. AVPSO algorithm is used to optimize the SVR penalty factor and kernel parameter, construction of AVPSO-SVR agricultural water consumption forecast model, and construct the basic PSO-SVR, GA-SVR, GA-BP and traditional BP model as a model for comparison; finally,it used the case before 8 years and after 4 years of data for the training and prediction of each model. The results showed that ①the global searching ability of AVPSO algorithm has been significantly improved,which can avoid the premature convergence problem. The AVPSO-SVR model of the relative mean absolute error of prediction of water with 4 years of agricultural instance and the maximum relative error absolute values were 0.48%, 0.78%.The prediction accuracy and generalization ability are better than those of PSO-SVR, GA-SVR, GA-BP and traditional BP model. AVPSO algorithm can effectively carry on the optimization of SVR penalty factor and kernel parameter.
查看全文  查看/发表评论  下载PDF阅读器
关闭