• ▶ 2008-2024年被中国情报信息研究所评价中心评为“中国科技核心期刊”
  • ▶ 2019-2024年连续三届被中国科学院文献情报中心中国科学引文数据库CSCD(核心库)收录
  • ▶ 2021、2023年入编北京大学图书馆《中文核心期刊要目总览》
  • ▶ 2020-2024连续四年入选《科技期刊世界影响力指数(WJCI)报告》
李月玉 , 李 磊.免疫粒子群算法与支持向量机在枯水期月径流预测中的应用水资源与水工程学报[J].,2015,26(3):124-128
免疫粒子群算法与支持向量机在枯水期月径流预测中的应用
Immune particle swarm algorithm and support vector machine in dry season monthly runoff prediction
  
DOI:10.11705/j.issn.1672-643X.2015.03.026
中文关键词:  月径流  径流预测  免疫粒子群算法  支持向量机  参数优化  枯水期
英文关键词:mothly runoff  runoff forecast  immune particle swarm algorithm  support vector machine  parameter optimization  dry season
基金项目:
作者单位
李月玉 , 李 磊 (云南省水利水电勘测设计研究院 云南 昆明 650021) 
摘要点击次数: 1967
全文下载次数: 987
中文摘要:
      针对支持向量机(SVM)最佳算法参数难以确定以及基本粒子群算法(PSO)易陷入局部极值等不足,提出免疫粒子群算法(IAPSO),利用IAPSO算法搜寻SVM学习参数,构建IAPSO-SVM预测模型,并与PSO-SVM、GA-SVM模型作为对比,以云南省某水文站枯水期月径流预测为例进行实例研究,利用实例前43年和后10年资料对模型进行训练和预测。结果表明:IAPSO-SVM模型对实例后10年枯水期1-3月月均径流预测的平均相对误差绝对值分别为3.32%、6.52%和6.55%,精度优于PSO-SVM和GA-SVM模型,表明IAPSO-SVM模型具有较高的预测精度和泛化能力。IAPSO算法利用浓度选择机制及免疫接种原理,改进了基本粒子群优化算法的全局寻优能力和收敛速度,具有较强的全局寻优能力。利用IAPSO算法优化得到的SVM学习参数可有效提高SVM模型的预测精度和泛化能力。
英文摘要:
      Aimed at the shortcomings of optimal algorithm parameters of support vector machine (SVM) being difficult to determine and basic particle swarm optimization algorithm (PSO) being easy to fall into local extreme and other issues, ,the paper proposed immune particle swarm optimization algorithm (IAPSO) by using IAPSO algorithm to search SVM learning parameters, constructed IAPSO-SVM forecast model, and compared it with PSO-SVM, GA-SVM mode.Taking monthly runoff forecast of a hydrological statione in Yunnan province as an example ,it trained and forecasted the model by using data before 43 years and after 10 years the station was built. The results show that the absolute values of average relative errors of prediction by use of IAPSO-SVM model in 3 months dry season after runoff instance of 10 years are 3.32%, 6.52% and 6.55%.The prediction accuracy by IAPSO-SVM model is better than that by PSO-SVM model and GA-SVM model.The result showed that IAPSO-SVM model has higher prediction accuracy and generalization ability. IAPSO algorithm used density selection mechanism and immunization theory to improve the global searching ability and convergence speed of basic particle swarm optimization algorithm, and has stronger global optimization ability. The SVM learn parameters got by using the IAPSO algorithm to optimize can effectively improve the prediction accuracy and generalization ability.
查看全文  查看/发表评论  下载PDF阅读器
关闭