• ▶ 2008-2024年被中国情报信息研究所评价中心评为“中国科技核心期刊”
  • ▶ 2019-2024年连续三届被中国科学院文献情报中心中国科学引文数据库CSCD(核心库)收录
  • ▶ 2021、2023年入编北京大学图书馆《中文核心期刊要目总览》
  • ▶ 2020-2024连续四年入选《科技期刊世界影响力指数(WJCI)报告》
代兴兰.遗传算法与最小二乘支持向量机在年径流预测中的应用水资源与水工程学报[J].,2014,25(6):231-235
遗传算法与最小二乘支持向量机在年径流预测中的应用
Application of genetic algorithm and least squares support vector machine in prediction of annual runoff
  
DOI:10.11705/j.issn.1672-643X.2014.06.049
中文关键词:  径流预测  遗传算法  最小二乘支持向量机  BP神经网络
英文关键词:runoff forecast  genetic algorithm  least squares support vector machine  BP neural network
基金项目:
作者单位
代兴兰 (云南省水文水资源局曲靖分局 云南 曲靖 655000 
摘要点击次数: 1676
全文下载次数: 1810
中文摘要:
      为克服最小二乘支持向量机(LSSVM)依赖人为经验选择学习参数的不足,利用遗传优化算法(GA)选择LSSVM惩罚因子C和核函数参数σ2,构建GA-LSSVM年径流预测模型,并构建LSSVM、GA-BP和传统BP模型作为对比,以云南省河边水文站年径流预测为例进行实例研究,利用实例前30 a和后22 a资料分别对各模型进行训练和预测。结果表明:GA-LSSVM模型对实例后22 a年径流预测的平均相对误差绝对值和最大相对误差绝对值分别为3.13%、8.66%,预测精度优于LSSVM、GA-BP和传统BP模型。GA算法全局寻优能力强,利用GA算法优化得到的LSSVM学习参数可有效提高LSSVM模型的预测精度和泛化能力。
英文摘要:
      In order to overcome the lack of learning parameters of least square support vector machine (LSSVM) which is chosen by human experience, the paper used the genetic algorithm (GA) to select LSSVM penalty factor c and kernel parameter and construct GA-LSSVM annual runoff forecasting model, and set up LSSVM, GA-BP and traditional BP model as the comparison.Taking Yunnan province river hydrological station annual runoff prediction as a case study , it used the data before 30 years and after 22 years to train and predict every model. The results show that the absolute value of the average relative error of annual runoff and the maximum absolute value of relative error predicted by GA-LSSVM model after 22 years are 3.13%, 8.66%, the prediction accuracy of GA-LSSVM model is better than that of LSSVM, GA-BP and traditional BP model. The global optimization ability of GA algorithm is strong. The LSSVM learning parameters gotten by optimization of GA algorithm can effectively improve the prediction accuracy of LSSVM model and the generalization ability.
查看全文  查看/发表评论  下载PDF阅读器
关闭