• ▶ 2008-2024年被中国情报信息研究所评价中心评为“中国科技核心期刊”
  • ▶ 2019-2024年连续三届被中国科学院文献情报中心中国科学引文数据库CSCD(核心库)收录
  • ▶ 2021、2023年入编北京大学图书馆《中文核心期刊要目总览》
  • ▶ 2020-2024连续四年入选《科技期刊世界影响力指数(WJCI)报告》
章恒全, 何 薇.基于主成分回归与灰色神经网络模型的水资源承载力需水量预测水资源与水工程学报[J].,2014,25(1):103-108
基于主成分回归与灰色神经网络模型的水资源承载力需水量预测
Forecast of water requirement of water resources carrying capacity based on regression of principal components and grey neural network model
  
DOI:10.11705/j.issn.1672-643X.2014.01.022
中文关键词:  水资源承载力  主成分回归模型  灰色神经网络模型  需水量预测
英文关键词:carrying capacity of water resources  principal component regression model  grey neural network model  forecast of water requirement
基金项目:
作者单位
章恒全a, 何 薇b (河海大学 a.商学院 决策与规划研究所 b.商学院, 南京 211100) 
摘要点击次数: 1697
全文下载次数: 1058
中文摘要:
      我国的水资源利用问题日趋严峻。作为影响水资源承载力的重要因素,社会经济活动对水资源的影响尤为明显。通过分析影响水资源承载力的社会经济驱动要素,建立主成分回归模型,分析得出影响江苏省水资源承载力变化的三个驱动力以及驱动力影响度,利用三个驱动力中的6个重要驱动因子,建立灰色神经网络预测模型,预测出江苏省2012-2013年的年需水量。结果表明:预测模型精度较高,最后结合江苏省发展现状提出相关的政策性建议。
英文摘要:
      Our country is facing serious water problems. As the important factor that affect water resources carrying capacity, the influence of social and economic activities on water resources is obvious. By analyzing the key element of socio economic driver that affects water resources carrying capacity, establishing the principal component regression model , the driving factors which influence the carrying capacity of water resources in Jiangsu were classified into three kinds , the influence degree of the driving factors was gained. Combined with grey neural network theory and six important factors which is coming from the three main factors, the grey neural network model was established to predict the total water uses in Jiangsu Province from 2012 to 2013.The prediction accuracy of the model is higher.At last, the paper gave relative policy recommendations by combining with the actual situation of Jiangsu Province.
查看全文  查看/发表评论  下载PDF阅读器
关闭