• ▶ 2008-2024年被中国情报信息研究所评价中心评为“中国科技核心期刊”
  • ▶ 2019-2024年连续三届被中国科学院文献情报中心中国科学引文数据库CSCD(核心库)收录
  • ▶ 2021、2023年入编北京大学图书馆《中文核心期刊要目总览》
  • ▶ 2020-2024连续四年入选《科技期刊世界影响力指数(WJCI)报告》
龙必能.基于指标权重的湖库营养状态识别水资源与水工程学报[J].,2013,24(6):194-199
基于指标权重的湖库营养状态识别
Identification of nutritional status of lake and reservoir based on index weights
  
DOI:10.11705/j.issn.1672-643X.2013.06.045
中文关键词:  营养状态识别  概率神经网络  熵权法  湖库
英文关键词:nutritional state recognition  probabilistic neural network  entropy method  lake and reservoir
基金项目:
作者单位
龙必能 (云南省水文水资源局文山分局 云南 文山 663000) 
摘要点击次数: 1785
全文下载次数: 0
中文摘要:
      针对湖库营养状态识别未考虑指标权重及营养状态分级较少的不足,基于熵值法与概率神经网络(PNN)基本原理,提出熵值PNN湖库营养状态识别模型,以全国24个湖库营养状态识别为例进行分析。利用熵值法确定识别指标权重,依据我国湖库富营养化评价标准,将湖库营养状态划分为极贫营养~极重度富营养11个等级,提出基于改进的湖库营养状态识别等级标准,在等级标准域值间采用随机内插的方法生成样本对PNN模型进行训练和检验,利用正确识别率和运行时间对PNN模型性能进行评价。最后,基于两种方案对全国24个湖库营养状态进行识别。结果表明:①PNN模型对于随机生成的训练样本和检验样本的正确识别率分别达到98.9%、98.6%(5次平均),模型用于湖库营养状态识别是合理可行的。②湖库识别结果存在差异。比较而言,基于指标权重考虑的识别结果更能科学、客观地反映湖库营养状态。
英文摘要:
      Aimed at the recognition of nutritional status for lake and reservoir not considering the indicators of nutritional status and weights index classification being less, based on entropy and probabilistic neural network (PNN) basic principles,the paper proposed entropy PNN recognition model of nutritional status of lake and reservoir, and took 24 lakes and reservoirs in the country for example analysis. By use of entropy method to determine recognition index weight, according to evaluation criteria of eutrophication of lakes and reservoirs,the paper classified lakes and reservoirs as 11 levels from extremely poor nutritional status nutritional to very severe eutrophication, proposed the grade standards of identification based on improved nutritional status of lakes and reservoirs. In grade standard field values,the paper interpolated between the use of methods to generate a random sample of PNN model for training and testing,and used correct recognition rate and duration to evaluate the performance PNN model. Finally,based on two programs ,it identified the nutritional status of 24 nationwide lakes and reservoirs. The results showed that ① PNN model for randomly generated training and testing samples, correct recognition rate reaches 98.9% and 98.6% (5 times the average), the model used to identify the nutritional status of lakes and reservoirs is reasonable and feasible. ② recognition results of lakes and reservoirs exist difference. In comparison, the recognition result considering index weights more scientifically and objectively reflect the nutritional status of lakes and reservoirs.
查看全文  查看/发表评论  下载PDF阅读器
关闭