• ▶ 2008-2024年被中国情报信息研究所评价中心评为“中国科技核心期刊”
  • ▶ 2019-2024年连续三届被中国科学院文献情报中心中国科学引文数据库CSCD(核心库)收录
  • ▶ 2021、2023年入编北京大学图书馆《中文核心期刊要目总览》
  • ▶ 2020-2024连续四年入选《科技期刊世界影响力指数(WJCI)报告》
章国勇, 伍永刚, 杨林明, 王鹏飞.基于参数优化的EEMD-LSSVM年径流组合预测模型水资源与水工程学报[J].,2013,24(6):1-5
基于参数优化的EEMD-LSSVM年径流组合预测模型
EEMD-LSSVM model of combined forecast of annual runoff based on parameter optimization
  
DOI:10.11705/j.issn.1672-643X.2013.06.001
中文关键词:  径流预测  总体经验模态分解  最小二乘支持向量机  参数寻优
英文关键词:runoff prediction  EEMD  LSSVM  parameter optimization
基金项目:湖北省自然科学基金重点项目(2011CDA032)
作者单位
章国勇, 伍永刚, 杨林明, 王鹏飞 (华中科技大学 水电与数字化工程学院 湖北 武汉 430074 
摘要点击次数: 1893
全文下载次数: 0
中文摘要:
      径流预测是水资源管理的基础,其准确性直接影响水资源优化调度的成果。本文针对径流时间序列的内在周期特性,引入一种基于总体经验模态分解(EEMD)的LSSVM组合预测模型,并提出一种基于动态逼近局部搜索粒子群的LSSVM参数寻优方法。基于分解-重构原则,论文首先利用总体经验模式分解法对径流系列进行周期分量提取,然后应用基于参数寻优的LSSVM模型对各分量进行预测和重构。以澧水流域江垭站的年径流预测为例进行模型检验,通过三种预测模型的结果对比,验证了本文组合预测模型的可靠性。
英文摘要:
      Runoff forecast is the base of water resources management and its accuracy has a critical influence on the optimization scheduling of water resources. Aimed at the inner periodic feature of runoff time series, a hybrid annual runoff forecast method based on ensemble empirical mode decomposition (EEMD) and least squares support vector machines (LSSVM) was proposed in this paper. To solve the problem of the uncertain parameters of LSSVM, a particle swarm optimization algorithm based on dynamic-approximation research was proposed to optimize the parameter in LSSVM. Based on the principle of decomposition and ensemble, the runoff series is decomposed into lots of periodic components first. And then, the LSSVM model is used to forecast and reconstruct these components of intrinsic mode function. In comparison to the results of three methods in the annual runoff forecast of Jiangya station in Lishui River, witch shows that the proposed runoff forecast model is reliable.
查看全文  查看/发表评论  下载PDF阅读器
关闭