• ▶ 2008-2024年被中国情报信息研究所评价中心评为“中国科技核心期刊”
  • ▶ 2019-2024年连续三届被中国科学院文献情报中心中国科学引文数据库CSCD(核心库)收录
  • ▶ 2021、2023年入编北京大学图书馆《中文核心期刊要目总览》
  • ▶ 2020-2024连续四年入选《科技期刊世界影响力指数(WJCI)报告》
余 开 华.小波神经网络模型在河道流量水位预测中的应用水资源与水工程学报[J].,2013,24(2):204-208
小波神经网络模型在河道流量水位预测中的应用
Application of RBF and GRNN neural network model in forecast of water runoff and head
投稿时间:2012-08-30  修订日期:2012-12-20
DOI:10.11705/j.issn.1672-643X.2013.02.048
中文关键词:  小波网络  BP神经网络  遗传算法  水文预测
英文关键词:wavelet network  BP neural network  genetic algorithm  hydrological prediction
基金项目:
作者单位
余 开 华 云南省水文水资源局文山分局, 云南 文山 663000 
摘要点击次数: 2093
全文下载次数: 1050
中文摘要:
      鉴于BP神经网络学习收敛速度慢、参数选择困难、易陷入局部极值等缺点,提出小波神经网络河道流量水位预测模型,以盘龙河天保站流量水位预测为例进行分析。采用循环算法确定最佳BP神经网络结构,并在相同网络结构及期望误差等条件下,运用GA优化BP神经网络初始权值和阈值,构建传统BP、GA-BP神经网络河道流量水位预测模型作为对比预测模型。结果表明:小波神经网络结合了神经网络与小波分解在函数逼近上的优点,其预测精度高于传统BP和GA-BP网络模型,表明小波神经网络用于河道流量水位预测是合理可行和有效的,可为水文预测预报提供新的途径和方法。且小波神经网络模型具有计算简便、逼近能力强、收敛速度快,能有效避免局部极值等特点,有着广阔的应用前景。
英文摘要:
      Based on RBF and GRNN neural network algorithm, the paper constructed RBF and GRNN neural network water demand prediction model, the model was applied to river water demand prediction, and with the basic BP neural network model and the gray GM ( 1,1) water demand prediction model fitting, prediction results were compared and analyzed. The results showed that RBF and GRNN neural network model has higher fitting, prediction accuracy, the average relative errors are within 5%. The RBF and GRNN neural network model witch is applied to water demand prediction is reasonable and feasible, the model generalization capability, high precision, stable algorithm, and BP algorithm compared with GRNN, RBF network model also has the advantages of fast convergence speed, a few tuning parameters and is easy to avoid falling into local minimum and other advantages, has a good application prospects.
查看全文  查看/发表评论  下载PDF阅读器
关闭