• ▶ 2008-2024年被中国情报信息研究所评价中心评为“中国科技核心期刊”
  • ▶ 2019-2024年连续三届被中国科学院文献情报中心中国科学引文数据库CSCD(核心库)收录
  • ▶ 2021、2023年入编北京大学图书馆《中文核心期刊要目总览》
  • ▶ 2020-2024连续四年入选《科技期刊世界影响力指数(WJCI)报告》
钱光兴,崔东文.RBF与GRNN神经网络模型在城市需水预测中的应用水资源与水工程学报[J].,2012,23(5):148-152
RBF与GRNN神经网络模型在城市需水预测中的应用
Application of RBF and GRNN neural networkmodel in the urban water forecast
投稿时间:2012-06-26  修订日期:2012-07-09
DOI:10.11705/j.issn.1672-643X.2012.05.037
中文关键词:  需水量预测  RBF神经网络  GRNN神经网络  BP神经网络  灰色GM(1,1)
英文关键词:water demand forecasting  RBF neural network  GRNN nural network  BP neural network  grey GM(1,1)
基金项目:
作者单位
钱光兴 云南省水文水资源局文山分局, 云南 文山 663000 
崔东文 文山州水务局, 云南 文山 663000 
摘要点击次数: 2015
全文下载次数: 1473
中文摘要:
      针对需水量预测具有受诸多因素影响的复杂、高维和非线性等特性,本文基于RBF与GRNN神经网络算法原理,构建RBF与GRNN神经网络需水预测模型,将模型应用于城市需水预测中,并与基本BP神经网络模型以及灰色GM(1,1)需水预测模型的拟合、预测结果进行了对比分析。结果表明:①RBF与GRNN神经网络模型有着较高的拟合、预测精度,平均相对误差均在5%以内,表明研究建立的RBF与GRNN神经网络模型应用于需水预测是合理可行的,模型泛化能力强,预测精度高,算法稳定,与基本BP网络算法相比,RBF与GRNN网络模型还具有收敛速度快、调整参数少和不易陷入局部极小值等优点,可以更快地预测网络,有着良好的应用前景。②相对而言,RBF与GRNN神经网络模型预测精度要优于基本BP网络和灰色GM(1,1)模型。
英文摘要:
      Forecast water demand is affected by many factors witch posses complex, high dimensional and nonlinear characteristics. Based on RBF and GRNN neural network algorithm principle,the paper constructed RBF and GRNN neural network water demand forecast model witch is used in the forecast of urban water demand ,and combined the model with the basic BP neural network model and the gray GM (1,1) water demand model , compared and analyzed the fitting and forecast results. The results showed that ① The RBF and GRNN neural network model applied to water demand forecast is reasonable and feasible, the model possesses the strong generalization ability , high prediction precision and stable algorithm. Compared with the basic BP network algorithm, the model also possesses the advantages of fast convergence speed, less adjustable parameters and not easy to fall into local minimum value, and has a good application prospect; ② relatively speaking, the prediction accuracy of RBF and GRNN neural network model is better than that of basic BP network and gray GM (1,1) model.
查看全文  查看/发表评论  下载PDF阅读器
关闭