Page 58 - 《水资源与水工程学报》2022年第5期
P. 58

5 4                      & ' ( ) & * + , -                 2022 $

                 conomicdevelopmentandwaterconservationoftheminingarea,andtheallocationschemecanensurethat
                 thewaterdemandofeachwaterusingsectoris100% satisfied ,whereastheoptimizedschemewithpollu
                 tantemissionasthetargetcanonlycauseregionalwatershortage.Thesystem canbringanetcarbon
                                                                                                  3
                                                                                      3
                 (CO)absorptionof533.7-702.4t,anexpectedeconomicbenefitof1623.0×10 -1637.4×10 yuan,
                    2
                                                                 3
                                                                   3
                                                       3
                 andaregionalwatersupplysurplusof435×10 -497×10m.Theresearchresultscanprovideatheoret
                 icalsupportforthequickrealizationofgreenminesinYangchangwanminingarea ,andalsosomeguidance
                 forthewaterresourcesallocationandprogrammingincoalminingareasinotheraridregions.
                 Keywords:multiobjectiveuncertainchanceconstrainedprogramming(MUCC);geneticalgorithm(GA);
                 waterresourcesallocationinminingarea;carbonemission;ecologicalrestorationofminingarea
                                                               –Ü&••–—‚†‡³ºØ›,´Äÿ4(inex
            1 ./01
                                                               actfuzzychanceconstrainedprogramming,IFCCP)  
                 "!1iòeV-SÕøÄl ¿éDE,                           G¤wx    [15] , i=®Q‚†‡³…÷›òy¤Ú€
            “ Î¢é” ¬³, "!¹"  14ÕPÄÍà'Vv                        Ú, ¹‰—™Ü-³Q…ºØQ !ü MSP(mul
            Ü 11 Õ°ŽòeV-        [1] 。CDE%o…F͙ö                tistagestochasticprogramming) ºÄ  [16] 。*:, ‚†
             ;©âãðJ,´øòeV-“ Áç¿0” Gï                           ‡³ºÄ–ýþCE?S²、 é-jÃCE?F
             fÉ。™¿pCjP—-|CDE $%                       [2] 、   G  [17] (@Ø®¯—Žq G£。¬Í¿˜F…¿
            FÍqÁ- ;©ú»…fƒJ¹iP—£C%                              lCaJ¦§Í¿- CDEð<, x¶Í¿-
            I [3] (Œ, ¿-;©ú»WCDE’<n³ r                        CDEI£DFGWýþ、 é-(ÈåHfãäÂ
                       [4]
            s)*+–        。¿-CDE‚}aJ¦§ø;©                       ‹Mij—DE²ÖPX ‚†‡³。¯x¯¿-
            NO…mn+, ûü, %&S²DLGI£¿-                            CDE²ÖPXv‚†‡³¬é ¦§, BÇ¥°
            Ü& CDE, •ëCDE7LI£ÝÍ, c‘ø¿                          @U, Éßᐂh}´ÄÊË。t›,´Äÿ
            -%CxÀ“ [ئ§ @Un‹, y4¿-                            4)P¹‰´Ä á³‚±ŽAÂֈCA, á
            áó.ûü¶D;©_`êÜJP89。*:, –                            G£Ž¿-CDE²Ö@U ÏÐv。
            Ü>?•–—¿-CDEÓ²Ö =*Wÿ4º                                 CDE²ÖºÄ `rv, È`r@¡2Ê
            Ä, ÁÚà%&S²CDEá¶Nr¿-CDEð                            …G ‚¤SBV?Q&@¡…Ó@¡oP
            lrs    [5-6] 。                                     M。_¦ V?@¡ÜjX¡、 ´Ä¡…[³ÿ4
                 CDEÓ²Ö(waterresourcesoptimalalloca          ¡  [18-19] (, dM@¡v}tcK=*W'Q)PQ
            tion ,WROA)  >?}Ž 20 µ¶ 50 õu, ‹E>Q                &×@TÓB;*W'Q, Øy;*W'QÂÃ
            &@¡   [7] –1G£Ž>?nv, ٙ[³ÿ4、 d©                    Ó`rÇ¥=*W'Q °@U。V?@¡Œ¯
            ÿ4、 *Wÿ4…=*Wÿ4            [8] (。÷ø¿-;©ú            |}ƒ¬é ðJ¦§              [20] , p²–z!d°
            »l` tŠ, 'Ž;© =*W²ÖºÄ‹Œ                           tv`'!° ‚ƒ。Ó@¡ÞßUV
                  [9]
            1J`      , ŠMºÄvxV¤ ;©Ý**WŽe                      @¡、 Ä­s@¡(。¶UV@¡BuЏ
            BJe]^Ê COD7åæ j6               [10-11] 。$t, ¿     Ó@¡êÜá;“=ÕeÁÂÃ=@A†‡ {
            éDE˜ûAt—ÌÍÉ¿, <ˆ¿-Å倐_„                           e, Z_YL`r†‡%³Z_»¼ =*WÓ
            ·bc.ê      [12] 。)PjP¿-;©ú»£C, ᶠ                 Œ  [21] 。¬d, v©¿¹—Y£Ž¿-CDE²Ö
            †*1úLO£DÌÍÅ»o@ØuÂő                       [13] ,   ‚†‡³›,´Äÿ4=*WºÄ(multiobjec
            †t™ö‚pv` ;©Ý*。¬d, v©¿¹'Ž                           tiveuncertainchanceconstrainedprogramming-ge
            Åj6 ;©Ý**W, ÁWV? ¶]^Êj                           neticalgorithm ,MUCC-GA), I£Û¢uZò²
            6B*W ºÄÂÃyä。                                       =UV@¡(elitistnondominatedsortinggenetical
                 CDE²ÖPXv, uŽ¿lCé6€f                         gorithm ,NSGA- Ⅱ) `rÛºÄ。
            d, ¬tðCÝ*、 “vÝ*…£¹lC6(®Qê
                                                              2 ¯°±²³D´µ¶·
            ܂†‡³, k¶ì†Ç¥。BrÏt¥Œ, ‚†
            ‡³Ólñ–‹ŒG£ŽCDEÓ²Öv                       [14] 。      ‚†‡³›,´Äÿ4(uncertainchancecon
   53   54   55   56   57   58   59   60   61   62   63