文章摘要
聂其坦, 肖浩汉, 刘 飞, 刘立鹏, 牛瑞强.隧洞掘进机掘进数据预处理方法及工程案例验证Journal of Water Resources and Water Engineering[J].,2024,35(5):191-200
隧洞掘进机掘进数据预处理方法及工程案例验证
TBM excavation data preprocessing method and engineering case verification
  
DOI:10.11705/j.issn.1672-643X.2024.05.23
中文关键词: 隧洞掘进机(TBM)  数据预处理  核密度估计  巴特沃斯滤波  长短期记忆网络(LSTM)
英文关键词: tunnel boring machine(TBM)  data preprocessing  kernel density estimation  Butterworth filtering  long short-term memory (LSTM)
基金项目:中国水利水电科学研究院基本科研业务费专项项目(GE0145B012021);国家自然科学基金项目(52179121);流域水循环模拟与调控国家重点实验室自主研究课题(SKL2022ZD05)
Author NameAffiliation
NIE Qitan1, XIAO Haohan2, LIU Fei1, LIU Lipeng2, NIU Ruiqiang1 (1.广东粤海粤西供水有限公司 广东 湛江 524000 2.中国水利水电科学研究院 北京 100048) 
Hits: 51
Download times: 41
中文摘要:
      全断面硬岩隧洞掘进机(TBM)在施工过程中自动获取了海量的掘进数据,适当筛选与清理掘进数据能够提高数据质量,对隧洞工程的智能化施工具有重要意义。因此,根据引绰济辽工程TBM掘进数据的特征,提出了集成的TBM掘进数据预处理方法,包括完整掘进段提取、内部掘进段分割以及掘进参数降噪。此外,采用时序预测更强的长短期记忆网络(LSTM)算法建立了扭矩切深指数(TPI)预测模型,以验证数据预处理方法的有效性。结果表明:所提出的数据预处理方法能够显著改善数据质量,提高深度学习模型的预测精度,验证集的拟合优度R2由0.503提升至0.721,相关系数R′由0.809提升至0.900,平均相对误差MRE由3.107下降至0.096。研究成果对于提高TBM掘进数据的准确性和可靠性具有重要意义,也可为相关领域的研究提供参考。
英文摘要:
      The full face hard rock tunnel boring machine (TBM) automatically generates massive excavation data during the tunnel construction process. Proper screening and cleansing of excavation data is crucial to data quality, which also has great guiding significance for the intelligent construction of tunnel engineering. Therefore, based on the characteristics of TBM excavation data in the Yinchuo Project, an integrated TBM excavation data preprocessing method is proposed, which includes complete excavation segment extraction, internal excavation segmentation, and excavation parameter noise reduction. To verify the effectiveness of the proposed data preprocessing method, a torque cut depth index (TPI) prediction model is developed by the long short-term memory (LSTM) algorithm, which has strong temporal prediction capabilities. The results demonstrate that the proposed data preprocessing method can significantly improve data quality and enhance the prediction accuracy of deep learning models. For the validation dataset, R2 increases from 0.503 to 0.721, R′ ascends from 0.809 to 0.900, and MRE plummets from 3.107 to 0.096. These research achievements bear profound implications for enhancing the precision and reliability of TBM tunneling data, thereby offering invaluable insights for further exploration in the related domain.
View Full Text   View/Add Comment  Download reader
Close
function PdfOpen(url){ var win="toolbar=no,location=no,directories=no,status=yes,menubar=yes,scrollbars=yes,resizable=yes"; window.open(url,"",win); } function openWin(url,w,h){ var win="toolbar=no,location=no,directories=no,status=no,menubar=no,scrollbars=yes,resizable=no,width=" + w + ",height=" + h; controlWindow=window.open(url,"",win); } &et=04FB345AE52748DF435ACFF20B381A86777DABFD97DF9125235B97F64F53F9678BB1DF2A67A7D9156C6FACAFB3B5CD047386D9D9A3018D84D57E045E794B4D8279DD5258B2C4CC949F7B8796A8F85D1A&pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=3ECA06F115476E3F&jid=BC473CEDCB8CE70D7B12BDD8EA00FF44&yid=B80136CCD8DCBAA1&aid=&vid=&iid=94C357A881DFC066&sid=AC1578C6BB9EBDEF&eid=1E41DF9426604740&fileno=20240523&flag=1&is_more=0">