文章摘要
郭硕栋, 王晓川, 张耀阳, 陈泽盟.基于水-热耦合模型的多年冻土隧道隔热层厚度优化研究Journal of Water Resources and Water Engineering[J].,2024,35(2):192-200
基于水-热耦合模型的多年冻土隧道隔热层厚度优化研究
Optimal design of thermal insulation layer thickness in permafrost tunnel based on hydro-thermal coupling model
  
DOI:10.11705/j.issn.1672-643X.2024.02.22
中文关键词: 隧道隔热层厚度  多年冻土  水-热耦合  温度场  数值模拟
英文关键词: tunnel insulation layer thickness  permafrost  hydro-thermal coupling model  temperature field  numerical simulation
基金项目:中交二公局局级重点课题(22020-4-17)
Author NameAffiliation
GUO Shuodong1, WANG Xiaochuan2, ZHANG Yaoyang2, CHEN Zemeng2 (1.河南理工大学 土木工程学院 河南 焦作 454000 2.中交二公局第四工程有限公司 河南 洛阳 471000) 
Hits: 521
Download times: 248
中文摘要:
      为了使多年冻土隧道围岩保持冻结状态,经常选择在隧道衬砌结构中铺设保温隔热层的方法以防止围岩产生冻融破坏。保温隔热层的厚度是影响多年冻土隧道结构的稳定性和工程经济的一个重要参数。针对这一问题,建立了考虑渗流和冰水相变的水-热耦合模型,并将该模型嵌入COMSOL Multiphysics数值软件中加以应用。以青海省某隧道为研究对象,对该隧道洞口段保温隔热层厚度的优化设计进行研究。结果表明:隧道仰拱位置被确定为优化设计的不利位置,隧道开挖在第1年的5月23日温度达到最高,被确定为优化设计的不利时间;不利位置处的最高温度随保温隔热层厚度的增加而下降,通过拟合公式计算出最优隔热层厚度为7.2 cm;在最优保温隔热层厚度下隧道衬砌背后围岩温度均处于0 ℃以下,不会产生冻融破坏。隧道在设计隔热结构时采用7.2 cm的隔热层厚度提高了围岩隧道结构的稳定性。
英文摘要:
      To maintain the surrounding rock in a frozen state, permafrost tunnels often incorporate an insulation layer within the tunnel lining structure to prevent freeze-thaw damage. The thickness of the insulation layer is a critical parameter affecting the stability and economic viability of permafrost tunnel structures. Addressing this concern, we developed a hydro-thermal coupling model that takes seepage and ice-water phase transition into accout. This model was integrated into COMSOL Multiphysics for practical application. Focusing on a tunnel located in Qinghai Province, we conducted an optimization study of the insulation layer thickness at the tunnel entrance section. The findings revealed that the tunnel arch position was identified as the unfavorable position for the optimization design, and the highest temperature within the tunnel excavation occurred on May 23 of the first year, which was deemed unfavorable for the optimization design. Moreover, the highest temperature at the unfavorable position decreased with the increase of the insulation layer thickness, and through a fitting formula, the optimal insulation layer thickness was calculated to be 7.2 cm. Under this optimal thickness, the temperature of the surrounding rock behind the tunnel lining can remain below 0 ℃, effectively preventing freeze-thaw damage. In the design of the tunnel’s insulation structure, an insulation layer thickness of 7.2 cm can enhance the stability of the surrounding rock tunnel structure.
View Full Text   View/Add Comment  Download reader
Close
function PdfOpen(url){ var win="toolbar=no,location=no,directories=no,status=yes,menubar=yes,scrollbars=yes,resizable=yes"; window.open(url,"",win); } function openWin(url,w,h){ var win="toolbar=no,location=no,directories=no,status=no,menubar=no,scrollbars=yes,resizable=no,width=" + w + ",height=" + h; controlWindow=window.open(url,"",win); } &et=814E146CDC21FC16D67E58DD7B0003CBE2F4F9D787261F533F12DC0E02A0E5661DC6E4933BDB4B73A29F15E1DE76C1EE1B12A938CA709A3CA9BB462B9AFDF88CA51A383312C17446DBE5F207EC6B7134B2FB5D9D1897CB02D5338B77EC3F3341AEB8E180AF1969D21C35BD569EA03664&pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=3ECA06F115476E3F&jid=BC473CEDCB8CE70D7B12BDD8EA00FF44&yid=B80136CCD8DCBAA1&aid=5E67AEFF15DB70DCBBFC2ECA59F756AA&vid=&iid=0B39A22176CE99FB&sid=C29816B2656377A7&eid=1E41DF9426604740&fileno=20240222&flag=1&is_more=0">