文章摘要
杨坪宏, 胡 奥, 崔东文, 杨 杰.基于数据处理与若干群体算法优化的GRU/LSTM水质时间序列预测Journal of Water Resources and Water Engineering[J].,2023,34(4):45-53
基于数据处理与若干群体算法优化的GRU/LSTM水质时间序列预测
Prediction of GRU/LSTM water quality time series based on data processing and optimization of several swarm intelligence algorithms
  
DOI:10.11705/j.issn.1672-643X.2023.04.06
中文关键词: 水质预测  门限循环控制单元  长短期记忆神经网络  小波包变换  变色龙优化算法  猎豹优化算法  山瞪羚优化算法
英文关键词: water quality prediction  gated recurrent unit (GRU)  long short-term memory networks (LSTM)  wavelet packet transform (WPT)  chameleon swarm algorithm (CSA)  cheetah optimization (CO) algorithm  mountain gazelle optimization (MGO) algorithm
基金项目:国家重点研发计划项目(2021YFC3200903);国家自然科学基金项目(51809288);中国水利水电科学研究院基本科研业务费项目(WR0145B022021)
Author NameAffiliation
YANG Pinghong1, HU Ao2, CUI Dongwen3, YANG Jie4 (1.云南省水文水资源局 云南 昆明650106 2.临沧润汀水资源科技服务有限公司云南 临沧677000 3.云南省文山州水务局 云南 文山 663000 4.北京全路通信信号研究设计院集团有限公司昆明分公司 云南 昆明 650041) 
Hits: 1250
Download times: 562
中文摘要:
      为提高水质时间序列预测精度,提出一种基于小波包变换(WPT)和变色龙优化算法(CSA)、猎豹优化(CO)算法和山瞪羚优化(MGO)算法的优化门限循环控制单元(GRU)、长短期记忆神经网络(LSTM)的预测模型。首先利用WPT对pH值、DO、CODMn、NH3—N时间序列进行平稳化处理,得到若干个规律性较强的子序列分量;其次简要介绍了CSA、CO、MGO算法原理,利用CSA、CO、MGO分别寻优GRU、LSTM超参数,建立WPT-CSA-GRU、WPT-CO-GRU、WPT-MGO-GRU、WPT-CSA-LSTM、WPT-CO-LSTM、WPT-MGO-LSTM模型;最后利用所建立的模型对pH值及DO、CODMn、NH3—N浓度各分量进行预测和重构,并建立WPT-GRU、WPT-LSTM和WPT-CSA-SVM、WPT-CO-SVM、WPT-MGO-SVM模型作对比分析模型,以云南省昆明市观音山断面为例,通过pH值及DO、CODMn、NH3—N浓度预测对模型进行了验证。结果表明:WPT-CSA-GRU、WPT-CO-GRU、WPT-MGO-GRU、WPT-CSA-LSTM、WPT-CO-LSTM、WPT-MGO-LSTM模型对实例pH值及DO、CODMn、NH3—N浓度的预测精度优于其他对比模型,具有较好的预测效果,其中尤以WPT-CSA-GRU、WPT-CO-GRU、WPT-MGO-GRU模型的预测精度最高;CSA、CO、MGO能有效调优GRU、LSTM超参数,显著提高GRU、LSTM预测性能;所构建的6种模型预测精度高且计算规模小,是有效的水质时间序列预测模型,可为相关水质预测研究提供参考。
英文摘要:
      To improve the prediction accuracy of water quality time series, a type of prediction model based on wavelet packet transform (WPT), chameleon optimization algorithm (CSA), cheetah optimization (CO) algorithm and mountain gazelle optimization (MGO) algorithm is proposed to optimize the gated recurrent unit (GRU) and long short-term memory networks (LSTM). Firstly, the time series of pH , DO, CODMn and NH3—N are stabilized by WPT, by which several regular subsequence components are obtained. Secondly, the CSA, CO and MGO algorithms are briefly introduced and then applied to the optimization of the hyper-rparameters of GRU and LSTM, by which the WPT-CSA-GRU, WPT-CO-GRU, WPT-MGO-GRU, WPT-CSA-LSTM, WPT-CO-LSTM, WPT-MGO-LSTM models are established. Finally, the established models are used to predict and reconstruct the components of pH, DO, CODMn, NH3—N, meanwhile, WPT-GRU, WPT-LSTM and WPT-CSA-SVM, WPT-CO-SVM, WPT-MGO-SVM models are established for comparative analysis. Then the models are verified by the prediction of pH, DO, CODMn, NH3—N of Guanyinshan section in Kunming, Yunnan Province. The results show that the prediction accuracy of WPT-CSA-GRU, WPT-CO-GRU, WPT-MGO-GRU, WPT-CSA-LSTM, WPT-CO-LSTM, WPT-MGO-LSTM models for pH, DO, CODMn, NH3—N of the case section are better than the comparison models with better prediction performance, of which WPT-CSA-GRU, WPT-CO-GRU, WPT-MGO-GRU models have the highest prediction accuracy; CSA, CO and MGO can effectively tune the hyper-parameters of GRU and LSTM, and significantly improve the prediction performance of GRU and LSTM; the six proposed models have high prediction accuracy and small calculation scale, which can be recognized as effective prediction models for water quality time series. This study can provide some reference for relevant water quality prediction research.
View Full Text   View/Add Comment  Download reader
Close
function PdfOpen(url){ var win="toolbar=no,location=no,directories=no,status=yes,menubar=yes,scrollbars=yes,resizable=yes"; window.open(url,"",win); } function openWin(url,w,h){ var win="toolbar=no,location=no,directories=no,status=no,menubar=no,scrollbars=yes,resizable=no,width=" + w + ",height=" + h; controlWindow=window.open(url,"",win); } &et=14179CEE1F58C830ACA13BD98A51395AD3C4B7F1D5CF898172D4EC60DF00F4F6DD0C1CF3FE281219D88EFE20FEEE0E31654EC983D2EFB7E444762AA80E4E2E8223DB1B7C17C8A820BDF293165B4ECA0ECFEB1079A91E82EC40581BC09FD0F3B77A3F8F49C308B3A39C5E4683112E19F9D2C61CC98B0E5197E22079FD1CB76B001C4709D318D09B14&pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=3ECA06F115476E3F&jid=BC473CEDCB8CE70D7B12BDD8EA00FF44&yid=BA1E75DF0B7E0EB2&aid=AFEF861A661A21AE5B88FD12F046EE58&vid=&iid=E158A972A605785F&sid=94E7F66E6C42FA23&eid=8E6AB9C3EBAAE921&fileno=20230406&flag=1&is_more=0">