文章摘要
孔晶晶, 昝 梅, 王雪梅, 杨雪峰.新疆玛纳斯河流域植被水分利用效率时空格局及影响因素研究Journal of Water Resources and Water Engineering[J].,2022,33(6):196-203
新疆玛纳斯河流域植被水分利用效率时空格局及影响因素研究
Spatiotemporal pattern of vegetation water use efficiency and its influencing factors in Manas River Basin, Xinjiang
  
DOI:10.11705/j.issn.1672-643X.2022.06.25
中文关键词: 植被水分利用效率  时空格局  地理探测器  Hurst指数  玛纳斯河流域
英文关键词: vegetation water use efficiency(WUE)  spatiotemporal pattern  geographical detector  Hurst index  the Manas River Basin
基金项目:新疆维吾尔自治区重点实验室招标课题(XJDX0909-2021-01); 新疆师范大学博士科研启动基金项目(XJNUBS2003); 新疆维吾尔自治区自然科学基金项目(2022D01A97)
Author NameAffiliation
KONG Jingjing1, ZAN Mei1,2, WANG Xuemei1,2, YANG Xuefeng1,2 (1.新疆师范大学 地理科学与旅游学院 新疆 乌鲁木齐 830054 2.新疆干旱区湖泊环境与资源重点实验室 新疆 乌鲁木齐 830054) 
Hits: 1177
Download times: 395
中文摘要:
      水分利用效率(WUE)是生态系统碳水循环的基础,是评价植被生长条件的重要生态指标。为了揭示玛纳斯河流域不同植被类型WUE的时空变化规律,分析不同植被类型WUE的差异,探讨影响WUE的驱动因子,基于MODIS数据估算了2001-2019年玛纳斯河流域水分利用效率,利用变异系数、Theil-Sen median趋势分析结合M-K显著性检验以及Hurst指数分析了研究区植被WUE时空变化的现状和未来的趋势,并利用地理探测器定量分析了WUE的影响因素。结果表明:2001-2019年玛纳斯河流域WUE在0.74~1.08 g/(mm·m2)之间,WUE多年平均值为0.88 g/(mm·m2),整体表现为波动降低趋势,降幅为6.82%。流域WUE空间差异显著,呈现中部和北部高、南部低以及中游高、上游和下游低的分布格局。研究区各植被类型中林地WUE平均值较高,其中针叶林的平均WUE最高,为1.52 g/(mm·m2);其次为阔叶林,WUE平均为1.29 g/(mm·m2)。研究区WUE主要驱动因子为CO2、土壤湿度、温度植被干旱指数和饱和水汽压差。与单因子相比,多因子相互作用对研究区WUE的影响更明显。双因子交互探测均呈显著增强关系,解释力均在60%以上,其中CO2与土壤湿度的交互作用解释力最高,达到90.3%。研究结果可为研究区农业高效生产、水资源优化管理及生态恢复提供科学依据。
英文摘要:
      Water use efficiency (WUE) is the basis of carbon and water cycle in ecosystem and an important ecological indicator for evaluating vegetation growth conditions. In order to reveal the spatiotemporal changes of WUE of different vegetation types in Manas River Basin, analyze the differences of WUE of different vegetation types, and discuss the driving factors affecting WUE, the WUE of Manas River Basin from 2001 to 2019 was quantitatively estimated based on MODIS data. Moreover, the coefficient of variation, Theil-Sen median trend analysis, M-K significance test and Hurst index were adopted to analyze the current situation and future trend of spatiotemporal changes of vegetation WUE, and geographical detectors were applied to quantitatively analyze the influencing factors of WUE in the study area. The research results show that the WUE in the Manas River Basin fluctuated between 0.74 and 1.08 g/(mm·m2) from 2001 to 2019, and the multi-year average of WUE was 0.88 g/(mm·m2), which showed an overall downward trend, with a decrease of 6.82%. The spatial difference of WUE was significant, showing a distribution pattern of high in the central and northern parts but low in the southern part; high in the middle reaches of the basin but low in the upper and lower reaches. The average WUE of forest land was relatively high among the vegetation types, and the average WUE of coniferous forest was the highest, which was 1.52 g/(mm·m2); followed by broad-leaved forest, which was 1.29 g/(mm·m2). The main driving factors of WUE in the study area were CO2, soil moisture, temperature vegetation drought index and vapor pressure deficit. Compared with single factor, the interaction of multiple factors had a greater impact on WUE in the study area, all the two-factor interaction detection showed a significant enhancement relationship, and each explanatory power was more than 60%, among which the explanatory power of the interaction between CO2 and soil moisture was the highest (90.3%). The research results can provide a technical support for efficient agricultural production, optimal management of water resources and ecological restoration in the study area.
View Full Text   View/Add Comment  Download reader
Close
function PdfOpen(url){ var win="toolbar=no,location=no,directories=no,status=yes,menubar=yes,scrollbars=yes,resizable=yes"; window.open(url,"",win); } function openWin(url,w,h){ var win="toolbar=no,location=no,directories=no,status=no,menubar=no,scrollbars=yes,resizable=no,width=" + w + ",height=" + h; controlWindow=window.open(url,"",win); } &et=C778C3C134A29F588DD605B2E02A5D1B00047A41E4A96856C2E814E6E46EA7CF2A6256BA1641E5003061ECEF7B83E79A26EFABAE5259CD1CE7934246CFE004B7BE736C2FBFE0DBD9C7F6A7F8654407CC5E009C55736D9DE5B0A624B4D2D86C72F7C9CCB21C574D5A4A80565F3A938ED4C98480292D175252&pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=3ECA06F115476E3F&jid=BC473CEDCB8CE70D7B12BDD8EA00FF44&yid=885CEFEC57DA488F&aid=837F6B627CC3BA859022D6D0B58FF95E&vid=&iid=B31275AF3241DB2D&sid=E0F6F365E4766526&eid=38685BC770C663F2&fileno=20220625&flag=1&is_more=0">