文章摘要
李其峰, 杨 杰, 程 琳, 仝 飞.基于BO-GRU的混凝土坝变形预测模型Journal of Water Resources and Water Engineering[J].,2021,32(4):180-184
基于BO-GRU的混凝土坝变形预测模型
Deformation prediction model of concrete dams based on BO-GRU model
  
DOI:10.11705/j.issn.1672-643X.2021.04.24
中文关键词: 混凝土坝  变形预测  深度学习  门控制循环单元  贝叶斯优化算法
英文关键词: concrete dam  deformation prediction  deep learning  gated recurrent unit(GRU)  Bayesian optimization algorithm(BO)
基金项目:陕西省水利科技计划项目(2018SLKJ-5); 自然科学基础研究计划-引汉济渭联合基金项目(2019JLM-55)
Author NameAffiliation
LI Qifeng1,2, YANG Jie1,2, CHENG Lin1,2, TONG fei1,2 (1.西安理工大学 省部共建西北旱区生态水利国家重点实验室 陕西 西安7100482.西安理工大学 水利水电学院 陕西 西安 710048) 
Hits: 1245
Download times: 1220
中文摘要:
      针对混凝土坝变形具有较强的非线性特点、目前大坝变形预测模型出现参数过多及易陷入局部最优等问题,提出了一种深度学习中的门控制循环单元(GRU)模型,并结合贝叶斯优化算法(BO)对门控制循环单元的超参数进行优化,建立BO-GRU模型应用于混凝土坝变形预测。为检验模型的可行性,以实测变形监测数据为基础,并与极限学习机、相关向量机和基于遗传算法优化的支持向量机等模型预测结果进行对比。结果表明:该模型的泛化能力强、运行效率高,能有效运用于混凝土坝的变形预测。
英文摘要:
      Because the deformation of concrete dams has strong nonlinear characteristics, too many parameters are involved when using current prediction models, and yet these models are prone to local optimum. Here, a gated recurrent unit (GRU) model in deep learning was combined with Bayesian optimization (BO) to optimize the hyperparameters of the gated recurrent units, based on which the BO-GRU model was established to predict the deformation of concrete dams. In order to test the feasibility of the model, its prediction result was then compared with that of the extreme learning machine, the correlation vector machine and the support vector machine optimized by the genetic algorithm, based on the measured deformation monitoring data. The comparison result shows that the BO-GRU model has strong generalization ability and high operating efficiency, and it is suitable for the deformation prediction of concrete dams.
View Full Text   View/Add Comment  Download reader
Close
function PdfOpen(url){ var win="toolbar=no,location=no,directories=no,status=yes,menubar=yes,scrollbars=yes,resizable=yes"; window.open(url,"",win); } function openWin(url,w,h){ var win="toolbar=no,location=no,directories=no,status=no,menubar=no,scrollbars=yes,resizable=no,width=" + w + ",height=" + h; controlWindow=window.open(url,"",win); } &et=5DE765D1BAE8FD3FE6388B940CF8C1BB82834304CF1F5F7025D56CFF54351B210334762527FB5909C5EBAD90B3F47CB50DB909C6BDDD20EFEA1FBC3DCB41EEE49314A4039319C397&pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=3ECA06F115476E3F&jid=BC473CEDCB8CE70D7B12BDD8EA00FF44&yid=9475FABC7A03F4AB&aid=EA4957416012ED06DC35B36783567C18&vid=&iid=E158A972A605785F&sid=F1A8654ADB4E656E&eid=798FBE8DE1A255B1&fileno=20210424&flag=1&is_more=0">