文章摘要
周有荣, 王 凯.改进WOA-指数幂乘积模型在基坑变形预测中的应用Journal of Water Resources and Water Engineering[J].,2020,31(3):233-239
改进WOA-指数幂乘积模型在基坑变形预测中的应用
Application of improved WOA-exponential power product model in foundation pit deformation prediction
  
DOI:10.11705/j.issn.1672-643X.2020.03.34
中文关键词: 基坑变形预测  鲸鱼优化算法  拉普拉斯交叉算子  指数幂乘积模型  参数优化
英文关键词: deformation prediction of foundation pit  whale optimization algorithm (WOA)  Laplace crossover operator (LX)  exponential power product (EPP) model  parameter optimization
基金项目:
Author NameAffiliation
ZHOU Yourong1, WANG Kai2 (1.临沧润汀水资源科技服务有限公司 云南 临沧 677000 2.云南省水文水资源局临沧分局 云南 临沧 677000) 
Hits: 1071
Download times: 465
中文摘要:
      为提高基坑变形预测精度,提出基于拉普拉斯交叉算子(LX)改进的鲸鱼优化算法(LXWOA)优化的指数幂乘积(EPP)基坑变形预测模型。选取4个标准测试函数对LXWOA进行仿真验证,并与基本鲸鱼优化算法(WOA)、灰狼优化(GWO)算法、正弦余弦算法(SCA)、粒子群优化(PSO)算法的仿真结果进行比较。利用LXWOA对EPP模型的指数参数进行优化,构建LXWOA-EPP变形预测模型,并构建WOA-EPP、GWO-EPP、SCA-EPP、PSO-EPP模型与LXWOA-SVM、LXWOA-BP模型作对比,以文献基坑监测数据为例进行实例研究,分别利用自相关函数法和虚假最邻近法确定实例延迟时间和嵌入维数,构建模型输入、输出向量,利用实例前15期和后3期监测数据对各模型进行训练和预测。结果表明:LXWOA搜索能力优于WOA、GWO、SCA和PSO算法,具有较好的寻优精度和全局搜索能力。LXWOA-EPP模型对实例预测的平均相对误差绝对值、平均绝对误差、均方根误差分别为0.18%、0.008 mm、0.009 mm,均优于WOA-EPP等6种模型和文献预测精度,表明LXWOA能有效优化EPP模型参数,LXWOA-EPP模型用于变形预测是可行和有效的,模型及方法可为其他相关预测研究提供参考。
英文摘要:
      In order to improve the prediction accuracy of foundation pit deformation, an improved exponential power product (EPP) foundation pit deformation prediction model was proposed based on the improved whale optimization algorithm with Laplace crossover operator (LXWOA). First, the simulation results of the LXWOA were verified by four standard test functions, and compared with those of basic whale optimization algorithm (WOA), gray wolf optimization (GWO) algorithm, sine cosine algorithm (SCA) and particle swarm optimization (PSO) algorithm. Then LXWOA was used to optimize the exponential parameters of the EPP model, by which the LXWOA-EPP deformation prediction model was constructed. Meanwhile, the WOA-EPP, GWO-EPP, SCA-EPP, PSO-EPP models were constructed to compare with the LXWOA-SVM and LXWOA-BP models. The case study data of a foundation pit mentioned in a paper was used in the models for verification purposes. The delay time and the embedding dimension of the models were determined by auto-correlation function method and false nearest neighbor method respectively to construct the input and output vectors, and then the first 15 and last three sets of the pit monitoring data were used to train the models for better prediction outcomes. The results show that the search ability of LXWOA is better than that of WOA, GWO, SCA and PSO algorithms, and it has better optimization precision and global search ability. The absolute relative error, mean absolute error and root mean square error of the foundation pit predicted by LXWOA-EPP model are 0.18%, 0.008 mm, and 0.009 mm, respectively, which are better than the six models of WOA-EPP and literature records. This indicates that the parameters of EPP models can be effectively optimized by LXWOA, and the LXWOA-EPP model is applicable and effective for deformation predictions. This model and method can provide some reference for other related prediction studies.
View Full Text   View/Add Comment  Download reader
Close
function PdfOpen(url){ var win="toolbar=no,location=no,directories=no,status=yes,menubar=yes,scrollbars=yes,resizable=yes"; window.open(url,"",win); } function openWin(url,w,h){ var win="toolbar=no,location=no,directories=no,status=no,menubar=no,scrollbars=yes,resizable=no,width=" + w + ",height=" + h; controlWindow=window.open(url,"",win); } &et=DCA5CABA83612A94527D8C68DFB10B6FBE6E70DCAC85FA59DAF84F6F5F7F5B111084BCAFD34AD4B50F2311A6E2E6E88DF7EBAB30707576121BAFB643322857A0C86945979CB28383792C9500797000BBDC0608CD5FA393AE25B46E7A09AA2A245B51FD78FD969ECC&pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=3ECA06F115476E3F&jid=BC473CEDCB8CE70D7B12BDD8EA00FF44&yid=0D1D160AB8016934&aid=47415C07092E978C4F161D967F02BA4F&vid=&iid=38B194292C032A66&sid=FD7C952458BFB5D8&eid=1DF3F9D75A12D97B&fileno=20200334&flag=1&is_more=0">