文章摘要
周有荣, 崔东文.基于最优觅食算法-投影寻踪-云模型的最严格水资源管理评价Journal of Water Resources and Water Engineering[J].,2018,29(5):101-108
基于最优觅食算法-投影寻踪-云模型的最严格水资源管理评价
The most stringent water resources management evaluation based on optimal foraging algorithm-projection pursuit - cloud model
  
DOI:10.11705/j.issn.1672-643X.2018.05.16
中文关键词: 最严格水资源管理  正态云模型  指标体系  最优觅食算法  投影寻踪  云南省
英文关键词: most stringent water resources management  normal cloud model  index system  optimal foraging algorithm  projection pursuit  Yunnan Province
基金项目:
Author NameAffiliation
ZHOU Yourong1, CUI Dongwen2 (1.临沧润汀水资源科技服务有限公司, 云南 临沧 677000 2.云南省文山州水务局, 云南 文山 663000) 
Hits: 1872
Download times: 1015
中文摘要:
      为全面衡量最严格水资源管理评价过程中的随机性与模糊性,将正态云模型引入最严格水资源管理评价,建立最优觅食算法-投影寻踪-正态云评价模型,以云南省16个州市最严格水资源管理评价为例进行研究。选取当前最严格水资源管理考核中万元GDP用水量等6大指标构建评价指标体系和分级标准,采用云模型正向发生器计算最严格水资源管理分级评价指标的隶属度,利用最优觅食算法-投影寻踪方法给出各指标权重,并与传统粒子群算法、人工蜂群算法和差分进化算法优化结果进行比较。根据隶属度矩阵和权重矩阵给出最严格水资源管理评价分级的确定度并进行评价。结果表明:最优觅食算法寻优精度高于传统粒子群等3种算法。昆明市、曲靖市最严格水资源管理评价为优秀,保山市、红河州、德宏州评价为合格,其余11个州市评价为良好。最优觅食算法-投影寻踪-正态云评价模型兼具模糊性和随机性,既能反映最严格水资源管理评价分级的定性概念,又可反映隶属程度的不确定性,具有较好的应用推广价值。
英文摘要:
      In order to comprehensively measure the randomness and ambiguity in the most stringent water resources management evaluation process, the normal cloud model was introduced into the most stringent water resources management evaluation, and the optimal foraging algorithm-projection pursuit-normal cloud evaluation model was established. Examples of the most stringent water resources management evaluations in 16 cities in Yunnan province are taken for case studies. Six indicators to build evaluation index system, such as the most stringent water resources management assessment of water consumption of 10,000 yuan GDP, and grading standards were selected, and the cloud model forward generator was adopted to calculate the membership degree of the most stringent water resources management grading evaluation index. The optimal foraging algorithm- projection pursuit method was used to work out the weight of each index, and compared with the traditional particle swarm optimization, artificial bee colony algorithm and differential evolution algorithm optimization results. The degree of certainty of the most stringent evaluation of water resources management is given and evaluated according to membership matrix and weight matrix. The results show that the precision of the optimal foraging algorithm is higher than that of the traditional particle swarm optimization algorithm, the most stringent water resources management evaluation of Kunming and Qujing City was excellent, Baoshan City, Honghe Prefecture, Dehong Prefecture were evaluated as qualified, the remaining 11 states were rated as good. The optimal foraging algorithm-projection pursuit-normal cloud evaluation model has both fuzziness and randomness, which not only reflect the qualitative concept of the most stringent evaluation and classification of water resources management, but also reflect the uncertainty of the degree of membership, which is of good promotional value.
View Full Text   View/Add Comment  Download reader
Close
function PdfOpen(url){ var win="toolbar=no,location=no,directories=no,status=yes,menubar=yes,scrollbars=yes,resizable=yes"; window.open(url,"",win); } function openWin(url,w,h){ var win="toolbar=no,location=no,directories=no,status=no,menubar=no,scrollbars=yes,resizable=no,width=" + w + ",height=" + h; controlWindow=window.open(url,"",win); } &et=66CA7A35493DC2CAB3C8D4A0D3C37B545B365B3AEEC6CECDDAC525DA3C6BB334F99EF1E849D0210DC4A6232A02DEF702C8FDF59BDD976238CCA43AD545449FB0109CEA68A7D12894B85364611897A77B596A692BA61BE1CC39C53B57503F0DDB6E5A4B01C200D1132B79EA141E0DFED9E18720D4A669C32099343C2114A1EDD6&pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=3ECA06F115476E3F&jid=BC473CEDCB8CE70D7B12BDD8EA00FF44&yid=EA357AD73C8E13BC&aid=0B4BF5AC87809E48DA8A27F892EB74B9&vid=&iid=94C357A881DFC066&sid=74011071555EB4E5&eid=6270DC1B5693DDAF&fileno=20180516&flag=1&is_more=0">