文章摘要
陈 刚, 黄 沛.成层土中静力触探锥头阻力分析Journal of Water Resources and Water Engineering[J].,2017,28(6):204-208
成层土中静力触探锥头阻力分析
Analysis of cone tip resistance in layered soil
  
DOI:10.11705/j.issn.1672-643X.2017.06.36
中文关键词: 静力触探  成层土  球孔扩张理论  锥头阻力
英文关键词: static cone penetration  layered soil  spherical cavity expansion theory  cone tip resistance
基金项目:
Author NameAffiliation
CHEN Gang, HUANG Pei 上海理工大学 土木工程系 上海 200093 
Hits: 1778
Download times: 726
中文摘要:
      为了解决成层土静力触探锥头阻力沿深度变化的问题,在经典球孔扩张理论的基础上,给出了考虑土体剪胀性、不同土层参数影响的同心分层球孔扩张解答。通过比较同心分层与水平分层土体球孔扩张压力变化规律的相关性,提出当探头位于土层分界面时,周围土体的变形可视为在另一种均质土中的球孔扩张,得到了锥头阻力沿深度变化的估算方法。结果表明:该方法与现有几种方法相比更为直观、精确;双层土情况下的估算值与模拟值较为接近,而夹层土情况下估算值与模拟值存在一定的误差。
英文摘要:
      In order to investigate the variation rule of cone tip resistance along depth in layered soil, a spherical cavity expansion solution in concentrically layered soil is developed based on the classical cavity expansion theory. The influence of dilation angle and the parameters of different soil layers is considered. By comparing the cavity expansion in concentrically and horizontally layered soil, here it is assumed that when the probe is located in the interface of soil layers, the deformation of surrounding soil can be regarded as a spherical cavity expansion in another kind of homogeneous soil. Based on this assumption, a simple evaluation method of cone tip resistance along the depth is obtained. The results show that this method can provide a more intuitional and accurate result compared with several existing methods. In the case of two-layer soil, the estimates are close to the finite element method results, but there is a certain deviation in the case of thin-layer soil.
View Full Text   View/Add Comment  Download reader
Close
function PdfOpen(url){ var win="toolbar=no,location=no,directories=no,status=yes,menubar=yes,scrollbars=yes,resizable=yes"; window.open(url,"",win); } function openWin(url,w,h){ var win="toolbar=no,location=no,directories=no,status=no,menubar=no,scrollbars=yes,resizable=no,width=" + w + ",height=" + h; controlWindow=window.open(url,"",win); } &et=6FD48CA0A0DD4759335A533C3606EF8AC27AAAC15AB65567ACA7B276F937CC015CCEFF81DCFA8CBB6725AD920B8A228E&pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=3ECA06F115476E3F&jid=BC473CEDCB8CE70D7B12BDD8EA00FF44&yid=FA004A8A4ED1540B&aid=079DEC12EA47775BFADA5D45892D6494&vid=&iid=B31275AF3241DB2D&sid=02DC3A182A5530DF&eid=3D9746C06EC12B45&fileno=20170636&flag=1&is_more=0">