文章摘要
于增知, 于宏兵, 郑力燕.松花江流域冷水鱼潜在分布预测模型研究Journal of Water Resources and Water Engineering[J].,2017,28(3):48-54
松花江流域冷水鱼潜在分布预测模型研究
Study on the potential distribution forecasting model of cold water fish in Songhua River Basin
  
DOI:10.11705/j.issn.1672-643X.2017.03.10
中文关键词: 水环境  环境因子  冷水鱼  逻辑回归分析  潜在分布预测模型  松花江流域
英文关键词: water enviroment  enviroment factor  cold water fish  logistic regression analysis  potential distribution prediction model  Songhua River basin
基金项目:国家水体污染控制与治理科技重大专项(2012ZX07501002-001)
Author NameAffiliation
YU Zengzhi1, YU Hongbing1, ZHENG Liyan2 1.南开大学 环境科学与工程学院天津 300350 2.南开大学 滨海学院 环境科学与工程系 天津 300270 
Hits: 2034
Download times: 912
中文摘要:
      人类过度捕捞和水利工程建设等行为导致水环境污染问题日益严重,对松花江流域冷水鱼资源造成严重破坏。通过2013~2015年间松花江流域冷水鱼野外调查数据,对冷水鱼的资源现状和生存环境特征进行了分析。采用统计学分析方法分析冷水鱼与环境因子的关系,并用逻辑回归分析构建冷水鱼潜在分布模型。结果表明:经度、纬度、海拔、气温对冷水鱼的分布有显著影响;冷水鱼主要分布在各级河流的源头区和上游区域、支流水域、溪流和山区河流中;用所构建模型对松花江流域冷水鱼的潜在分布河段做出预测,预测河段与文献记载相符,说明此模型可以有效预测物种分布。
英文摘要:
      The problems of water environment pollution is becoming more and more serious due to the human's over fishing and the construction of water conservancy projects, which cause serious destroys to the cold water fish resources in the Songhua River Basin. Based on the field survey data of cold water fish in Songhua River basin from 2013 to 2015, the present situation and the living environment characteristics of cold water fish were analyzed.Statistical analysis was used to analyze the relationship between cold water fish and environmental factors, and the potential distribution model of cold water fish was established by the logistic regression analysis.The results showed that, the longitude, latitude, altitude and air temperature had significant effects on the distribution of cold water fish. Cold water fish were mainly distributed in the headwaters and upstream regions of rivers, tributaries, streams and mountain rivers. The established model was used to predict the potential distribution of cold water fish in the Songhua River basin, and the predicted river was consistent with the literature, indicating that this model can effectively predict species distribution.
View Full Text   View/Add Comment  Download reader
Close
function PdfOpen(url){ var win="toolbar=no,location=no,directories=no,status=yes,menubar=yes,scrollbars=yes,resizable=yes"; window.open(url,"",win); } function openWin(url,w,h){ var win="toolbar=no,location=no,directories=no,status=no,menubar=no,scrollbars=yes,resizable=no,width=" + w + ",height=" + h; controlWindow=window.open(url,"",win); } &et=08EE5A5866ACE440468B13FE9104DC72171B6CEAC32E4070CC89C2C10F40A4069F9BE31565D26918AAB71DBFA31E9927EBEB9CD3EC8D9FC033F729D4FA6B2A44D9DA4E8B4736C192C768B12CE9B4E5D888F7B8F0714DCDD4F37EFAC9C786F9ED&pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=3ECA06F115476E3F&jid=BC473CEDCB8CE70D7B12BDD8EA00FF44&yid=FA004A8A4ED1540B&aid=BFC2D47303AC53F6BD65C25E105EEE0C&vid=&iid=38B194292C032A66&sid=B6DA1AC076E37400&eid=318E4CC20AED4940&fileno=20170310&flag=1&is_more=0">