文章摘要
杨陈东, 常安定, 李文胜, 张 明.改进粒子群算法在确定含水层参数中的应用Journal of Water Resources and Water Engineering[J].,2017,28(1):100-103
改进粒子群算法在确定含水层参数中的应用
Applications of the improved particle swarm algorithm to estimate aquifer parameters
  
DOI:10.11705/j.issn.1672-643X.2017.01.17
中文关键词: 含水层参数  粒子群算法  参数估计  抽水试验
英文关键词: aquifer parameter  particle swarm optimization  parameter estimation  pumping test
基金项目:陕西省教育厅科研计划项目(16JK1394)
Author NameAffiliation
YANG Chendong1, CHANG Anding2, LI Wensheng1, ZHANG Ming1 (1.西安航空学院 理学院, 陕西 西安 710077 2.长安大学 理学院, 陕西 西安 710061) 
Hits: 2157
Download times: 1145
中文摘要:
      通过分析抽水试验数据,为估计含水层参数提供新的方法。在粒子多样性方面对粒子群算法进行改进,提高了算法的收敛速度和精度。将改进的粒子群优化算法应用到含水层参数估计中,计算结果与其他方法进行对比,并对不同初始值范围下参数估计值进行分析探讨。结果表明:改进粒子群算法估计结果相对误差(7.3%和4.5%)小于其他方法,且目标函数值相对更小,达到0.335×10-5;对于不同初始参数范围,利用此算法均能达到满意结果且寻优率高。基于抽水试验数据估计含水层参数的改进粒子群优化算法计算结果有效且可靠,算法收敛速度快,寻优能力强,稳定性好。
英文摘要:
      To analyze pumping test data can supply a new method for estimating aquifer parameters. The particle swarm algorithm improved in terms of particle diversity increased convergence speed and accuracy of the algorithm. The improved particle swarm optimization algorithm was applied to estimate the aquifer parameters. The calculated results were compared with the other methods , and the estimated values of parameters under different initial scopes were analyzed and discussed. The results showed that, the relative errors of improved particle swarm algorithm (which were 7.3% and 4.5%, respectively) were smaller than the relative errors of the other methods, and the objective function value was also relatively smaller, reaching 0.335×10-5; For different initial parameter ranges, the improved algorithm obatined a satisfactory parameter estimation result and maintained a high rate of optimization search. Based on pumping test data, the results of improved particle swarm optimization algorithm for estimating aquifer parameters were more effective and reliable with fast convergence speed, strong optimization ability and good stability.
View Full Text   View/Add Comment  Download reader
Close
function PdfOpen(url){ var win="toolbar=no,location=no,directories=no,status=yes,menubar=yes,scrollbars=yes,resizable=yes"; window.open(url,"",win); } function openWin(url,w,h){ var win="toolbar=no,location=no,directories=no,status=no,menubar=no,scrollbars=yes,resizable=no,width=" + w + ",height=" + h; controlWindow=window.open(url,"",win); } &et=DCA5CABA83612A9417BDE4EF5409C7D35DA1EB1E014F1517DF72C20963303F7DF8FD9457D19927A1964185C6DD6F644DF5DD7C72183BD2333868A07CA87539E96231B8AC7C48944D81EA39A13EA9FFF602946D3859804273&pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=3ECA06F115476E3F&jid=BC473CEDCB8CE70D7B12BDD8EA00FF44&yid=FA004A8A4ED1540B&aid=27E32DE668AC4BBA2EE855C7F513A9CC&vid=&iid=CA4FD0336C81A37A&sid=8C83C265AD318E34&eid=89F76E117E9BDB76&fileno=20170117&flag=1&is_more=0">