文章摘要
王 泽 平.基于GA-BP与多隐层BP网络模型的水质预测及比较分析Journal of Water Resources and Water Engineering[J].,2013,24(3):154-160
基于GA-BP与多隐层BP网络模型的水质预测及比较分析
Prediction and comparative analysis of water quality based on GA-BP and multi-hidden-layer BP network model
Received:December 21, 2012  Revised:January 14, 2013
DOI:10.11705/j.issn.1672-643X.2013.03.036
中文关键词: 神经网络  遗传算法  多隐含层  水质预测
英文关键词: neural networks  genetic algorithm  more hidden layer  prediction of water quality
基金项目:
Author NameAffiliation
WANG Zeping Lijiang Branch Bureau,Yunnan Province Hydrology Water Resources Bureau,Lijiang 674100,China [KH*3D] 
Hits: 1952
Download times: 1119
中文摘要:
      采用循环算法确定最佳BP神经网络结构,建立BP神经网络水质模型进行预测。鉴于BP神经网络学习收敛速度慢、易陷入局部极值等缺点,在相同网络结构及期望误差等条件下,运用GA优化BP神经网络初始权值和阈值,构建GA-BP以及多隐层BP神经网络水质预测模型,以云南省某水库总氮预测为例进行预测与比较分析。结果表明:①GA-BP网络水质模型预测精度高于基本BP网络,表明遗传算法能有效优化BP网络初始权值和阈值。②增加BP神经网络隐层数能进一步提高网络预测精度,但训练时间也随着延长。③GA-BP及多隐层BP可作为提高网络预测精度的有效方法,二者均可用于水质预测预报,可为水质预测预报提供新的途径和方法。相对而言,GA-BP模型收敛速度快、预测精度高,具有一定的计算优势。
英文摘要:
      Taking round-robin algorithm to determine the optimal BP neural network structure, the paper established BP neural network model to predict water quality. In view of the shortcomings such as lower learning convergence speed of BP neural network, easy to fall into local extremum, in the same conditions of network structure and expectation error,the paper used GA to optimize the initial weights and threshold of BP neural network, and build GA-BP and multi-hidden layer BP neural network prediction model for water quality.The paper took total nitrogen of a reservoir in Yunnan Province for example to predict , compare and analyze. The results showed that ①prediction accuracy of GA-BP network model is better than that of water quality model of basic BP network, indicating that the genetic algorithm can effectively optimize the BP network initial weights and thresholds. ②The increase of hidden layers BP neural network can further improve the network prediction accuracy, but further extend the training time. ③GA-BP and a number of hidden-layer BP network can improve the prediction accuracy as an effective way, both can be used to forecast water quality, and provide new ways and methods for water quality forecast. In contrast, the faster convergence speed and higher prediction accuracy of GA-BP model have a certain computational advantages.
View Full Text   View/Add Comment  Download reader
Close
function PdfOpen(url){ var win="toolbar=no,location=no,directories=no,status=yes,menubar=yes,scrollbars=yes,resizable=yes"; window.open(url,"",win); } function openWin(url,w,h){ var win="toolbar=no,location=no,directories=no,status=no,menubar=no,scrollbars=yes,resizable=no,width=" + w + ",height=" + h; controlWindow=window.open(url,"",win); } &et=14179CEE1F58C830809509E1A1D4D5F2B50B230655DFD0A02875BD2E9FB97D530D3C3AA2C4E1610F8B653F6D249F8DA647A93600510E217949EC9E69A54F91DAE18417DC327AECD719BCABC188717306B74FC6E2A2FC48D9D7391330C544C67E02A4A30C81D867E8F341EFFB78D7AFE2&pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=3ECA06F115476E3F&jid=BC473CEDCB8CE70D7B12BDD8EA00FF44&yid=FF7AA908D58E97FA&aid=0BF38A668060357405F70C59F67B8B5C&vid=&iid=38B194292C032A66&sid=E2546871E5B846EF&eid=1B97AE5098AEB49C&fileno=20130336&flag=1&is_more=0">