文章摘要
刘治学,张 鑫,王颖华.包头市市区居民生活用水量预测分析Journal of Water Resources and Water Engineering[J].,2012,23(5):67-70
包头市市区居民生活用水量预测分析
Forecast of urban residential domestic water consumption in Baotou
Received:June 06, 2012  Revised:July 03, 2012
DOI:10.11705/j.issn.1672-643X.2012.05.016
中文关键词: 多元线性回归模型  灰色GM(1,1,)模型  组合灰色模型  灰色关联分析  城市生活用水预测
英文关键词: multiple linear regression model  gray model GM(1,1)  combination gray model  gray correlation analysis  forecast of urban domestic water consumption
基金项目:国家“863”计划项目(14110209); “十一五”国家重大科技支撑计划项目(2006BAD11B05); 西北农林科技大学博士科研启动基金资助项目(01140504); 西北农林科技大学科研专项(08080230)
Author NameAffiliation
LIU Zhixue College of Water Resources and Architecture Engineering, Northwest A & F University, Yangling 712100, China
Baotou City Water Supply Company, Baotou 014030, China 
ZHANG Xin College of Water Resources and Architecture Engineering, Northwest A & F University, Yangling 712100, China 
WANG Yinghua College of Water Resources and Architecture Engineering, Northwest A & F University, Yangling 712100, China 
Hits: 1883
Download times: 1278
中文摘要:
      用水量预测对区域水资源规划、利用和管理提供重要依据。运用灰色关联度分析法分析包头市市区居民生活用水量影响因素的基础上,分别建立多元线性回归模型、灰色GM(1,1)模型及灰色线性组合模型对该地区2009年和2010年的生活用水量进行预测分析,同时比较了三个模型的预测精度。结果表明:城市居民生活用水量与城市用水人口、人均居住面积和水价的关联度较高;2009年和2010年用水量的预测采用组合灰色模型精度最高,相对误差分别为13.6%%和6.5%,均方根相对误差为10.7%。组合预测模型的预测精度明显优于单一模型,使结果更加准确、合理,符合实际情况。
英文摘要:
      The water demand forecast can supply vital basis for reginoal water resources plan, utilization and management. On the basis of analysis of the influence factors of residential domestic water consumption in Baotou City by gray correlation analysis, the paper forecasted the regional domestic water consumption in 2009 and 2010 by modeling a multiple linear regression model, gray model (1,1) and gray linear combination model, and compared their prediction accuracy. The results showed that the main factors to regional domestic water consumption were population of urban water, per capita living space and water price. Forecast of water consumption in 2009 and 2010 had highest accuracy by gray linear combination model; relative errors were 13.6% and 6.5% respectively; relative error of root mean square was 10.7%. Prediction accuracy of combination forecast model was better than that of single one and made results more accurate, reasonable and realistic.
View Full Text   View/Add Comment  Download reader
Close
function PdfOpen(url){ var win="toolbar=no,location=no,directories=no,status=yes,menubar=yes,scrollbars=yes,resizable=yes"; window.open(url,"",win); } function openWin(url,w,h){ var win="toolbar=no,location=no,directories=no,status=no,menubar=no,scrollbars=yes,resizable=no,width=" + w + ",height=" + h; controlWindow=window.open(url,"",win); } &et=75E2B26280C79406C8706D7808AD3332E99EFAD5AD4AC9BC1266942758D94A3E5F9F07C7CE86368154DFA80FEC0CC95D51D5E7AC0BA99E334498397BEADB82DFE91492D49BFFA37F&pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=3ECA06F115476E3F&jid=BC473CEDCB8CE70D7B12BDD8EA00FF44&yid=99E9153A83D4CB11&aid=2C733F139E82D2B04EA5AD09D08701B4&vid=&iid=94C357A881DFC066&sid=5D71B28100102720&eid=09ABD5535D9B6D45&fileno=20120516&flag=1&is_more=0">