文章摘要
ZHENG Jinghua,WANG Li,LIU Zhibin.RBF与Elman在露天矿区地下水水质评价与预测中的应用Journal of Water Resources and Water Engineering[J].,2011,22(5):
RBF与Elman在露天矿区地下水水质评价与预测中的应用
Application of RBF and Elman in assessing and predicting ground water quality of open-cut mine
  
DOI:10.11705/j.issn.1672-643X.2011.05.206
中文关键词: 人工神经网络  地下水水质评价  水质指标
英文关键词: artificial neural network  groundwater quality evaluation  water quality index  
基金项目:
Author NameAffiliation
ZHENG Jinghua,WANG Li,LIU Zhibin ZHENG Jinghua,WANG Li,LIU Zhibin(School of Resource and Evironment Engineering,Liaoning Technical University,Fuxin 123000,China) 
Hits: 1739
Download times: 2
中文摘要:
      通过构建RBF与Elman网络模型,以归一化后的标准矩阵为训练样本,利用Matlab软件辅助,进行网络训练后分别对阜新海洲露天矿矿区地下水水质进行了评价与预测.结果表明:RBF与Elman预测结果基本一致,预测模型可以较好的反映出地下水质的变化状况;该矿区地下水的污染较为严重,总体为Ⅳ-Ⅴ类水质,主要污染因子为无机盐类.随着年限的增加,该区地下水的污染情况会越来越重.
英文摘要:
      
View Full Text   View/Add Comment  Download reader
Close
function PdfOpen(url){ var win="toolbar=no,location=no,directories=no,status=yes,menubar=yes,scrollbars=yes,resizable=yes"; window.open(url,"",win); } function openWin(url,w,h){ var win="toolbar=no,location=no,directories=no,status=no,menubar=no,scrollbars=yes,resizable=no,width=" + w + ",height=" + h; controlWindow=window.open(url,"",win); } &et=DCA5CABA83612A9435284AAB36574CECA13F7DBD0B369C127CAB7B64376A1A6331F0F453102FE3D4D265AB3C5BB7D3C7EF9E92A37C9481ABCD7DCAF984DFC97DA19EB45C686A73B8DA12382C445B4A031DC6A2D3B83051FBE07123400911A3B1&pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=3ECA06F115476E3F&jid=BC473CEDCB8CE70D7B12BDD8EA00FF44&yid=9377ED8094509821&aid=99964020124&vid=&iid=94C357A881DFC066&sid=&eid=&fileno=201105206&flag=1&is_more=0">