Page 211 - 《水资源与水工程学报》2025年第2期
P. 211
!36 "!2 # & ' ( ) & * + , - Vol.36No.2
2025 $ 4 % JournalofWaterResources&WaterEngineering Apr.,2025
DOI:10.11705/j.issn.1672-643X.2025.02.24
'0y% LSTMëì<¾0ÊË&ÌðàÒ
-ñò 1,2,3,4 , ä´ 1,2,3,4 , tJJ 1,2,3,4 , XóÃ 1,2,3,4 ,
1,2,3,4 1,2,3,4 1,2,3,4
< ô , $|õ , XDö
(1. ghilZ IÙ#$Z%, VW ghi 832000;2. HIL[STbcdef,
VW ghi 832000;3. STF[IMúûðk×âV!, VW ghi 832000;
4. F[F\]^_`aHIF[bcdef, VW ghi 832000)
A B: º4WP[;z!, ·Ûo~Q¡5èPUCLB.JÅL[>öúb?。óÎÙÞÞ
gTo~Qí%, æ4WP¿TL[,ÈçYZ>。=5 2021 J 2022 TT¨;qÃP¿º 20、40、
60、80cmoTo~QÌ>、 ÆOÌ>©L[I.QÕ¡Ì>Ü, u cñëRI¬¬è(LSTM) í%¡
üoo~Q»¼Bª。Ù4 4 û9N LSTMí%MÝTBX LSTMí%, åº_lÒÓÀÈ
Þg, Àu k Ä5eÁÂSTÉdÁ(SSA) ¡éû9N LSTMí%»¼ÍíÌ-è, ©ÈZí%Tw
PÏèJ·ÛN。¡ü9Ní%T©É»¼6Ë, ýdX×TÁy。ÁyêZ: º 4 ûoQBÌ
2
>Ü, BX LSTMí%¡oU 1、12、24、48h To~QTðÅâÌ (R)xÈZö 0.951、0.932、0.870、
0.815; BX LSTMí%±ÈZP¿o~QT!cÃÞg, Qxuº 24 J 48h T!, лyhæ
ZX, KæP¿TÞPL[,Èç±èé, !äF¯±v I, ÒGxy。
CDE: o~Q; BX LSTM; STÉdÁ; k Ä5e; 4WKLpP
FGHIJ:S274;S665.1 KLMNO:A KPQJ:1672643X(2025)02020711
SoilmoisturepredictionofjujubetreesinsouthernXinjiang
basedonmultiheadLSTM model
1,2,3,4
1,2,3,4
1,2,3,4
1,2,3,4
1,2,3,4
YANGYihang ,LDesheng ,LIUNingning ,WANGZhenhua ,LIMiao ,
1,2,3,4
ZHANGJinzhu 1,2,3,4 ,WANGDongwang
(1.CollegeofWaterConservancy&ArchitecturalEngineering,ShiheziUniversity,Shihezi,832000,China;2.KeyLaboratoryof
ModernWaterSavingIrrigationofXinjiangProduction&ConstructionCorps ,Shihezi832000,China;3.Technology
InnovationCenterforAgriculturalWaterandFertilizerEfficiencyEquipmentofXinjiangProduction&Construction
Corps,Shihezi832000,China;4.KeyLaboratoryofNorthwestOasisWaterSavingAgriculture,
MinistryofAgricultureandRuralAffairs,Shihezi832000,China)
Abstract:Accuratepredictionofsoilmoistureiscrucialforoptimizingcropplantingqualityandirrigation
schemesofjujubetrees(ZiziphusjujubaMill.).Thisstudyestablishedahighprecisionsoilmoisture
predictionmodeltoimprovetheirrigationmanagementofjujubetreesinsouthernXinjiang.Basedon
hourlydatasetsofsoilmoisturecontent ,meteorologicaldata,andirrigationvolumeforjujubetreesduring
theentiregrowingseasonsof2021and2022atsoildepthsof20,40,60,and80cm,alongshortterm
memory(LSTM)neuralnetworkmodelwasusedtoperform multisteppredictionsofsoilmoisturefor
eachsoillayer.Toexpandthemodel ’spredictionrangeandimprovepredictionaccuracy,amultihead
LSTM(MLSTM)modelconsistingoffourindividualLSTM modelswasintroduced.kfoldcrossvalida
tioncombinedwiththesparrowsearchalgorithm(SSA)wasusedforhyperparametertuningofeachindi
!"#$:20241115; %$:20241225
'()*: "Äbc(>-.(2022YFD1900405);STYkÝyàPÙ<>-.(2023BA003);"Ä“ WØ$”
bc(>-.(2021YFD1900802-2); STF[ GG-.(2023AA305)
+,-.: søu(1999—), 2, §æ§è7, 89();, >?@AHIL[*k×RST()。
ר+,: íò;(1964—), 2, h4L7, Y, p;, 89;<=, >?@AHIL[*k×RST()。