Page 223 - 《水资源与水工程学报》2024年第6期
P. 223

! 6#       Ÿ », A: ¼½_(mn)rs,t3vp¾½¿°Àˆ459:———ÁÂÃÄÅÆ                                         2 1 9

                 feedforwardneuralnetworksappliedtostreamflowseries  [40]› ß, ›>C, Æ â, 4. '× FY3D/MERSI s9T
                 forecasting[J].MathematicsinEngineering,Scienceand  ¸IÿÒ»Ÿ81}BC[J]. Ò»Iÿò7BC,
                 Aerospace ,2019,10(1):4153.                      2023,41(4):289297+317.
            [31]CHENTongfeng,XIAOLiang.ApplicationofRBFand     [41]ð û, ٜ, ¿žá, 4. .!Ò»H¶¯Ebž®
                 GRNNneuralnetworkmodelinriverecologicalsecurity   IJBC_ŸlŸ™[J]. Þ,&¾,2020,78(3):
                 assessment :takingthemiddleandsmallriversinSuzhou  500521.
                 Cityasanexample [J].Sustainability,2023,15(8):  [42]PADARIANJ,MINASNYB,MCBRATNEYAB.Ma
                 6522.                                             chinelearningandsoilsciences :areviewaidedbyma
            [32]KAMELAH,AFANH A,SHERIFM,etal.RBFNN                 chinelearningtools[J].Soil,2020,6(1):3552.
                 versusGRNNmodelingapproachforsubsurfaceevapora  [43]HENGLT,NUSSBAUMM,WRIGHTM N,etal.Ran
                 tionratepredictioninaridregion [J].SustainableCompu  domforestasagenericframeworkforpredictivemodeling
                 ting :InformaticsandSystems,2021,30:100514.       ofspatialandspatiotemporalvariables [J].PeerJ,2018,
            [33]VAPNIKVN.Statisticallearningtheory[M].Hoboken:     6:e5518.
                 Wiley-Interscience,1998.                      [44]KAPUSUZOGLUB,MAHADEVANS.Informationfusion
            [34]GHOLAMIR,FAKHARIN.Supportvectormachine:            andmachinelearningforsensitivityanalysisusingphysics
                 principles,parameters,andapplications[J].Handbook  knowledgeandexperimentaldata [J].ReliabilityEngi
                 ofNeuralComputation ,2017:515535.                neering&SystemSafety ,2021,214:107712.
            [35]þ’Ø, ð r, ¸ “, 4. '×,&-§;-1                 [45] FENG Puyu,WANG Bin,LIU Deli,etal.Machine
                 s9š\ SPEI Ÿ8ñTÒ» [J]. .!ò7Þ,,                      learningbasedintegrationofremotelysenseddroughtfac
                 2021,42(3):230242.                                torscanimprovetheestimationofagriculturaldroughtin
            [36]HUANG Guangbin,ZHU Qinyu,SIEW CK.Extreme            SouthEasternAustralia[J].AgriculturalSystems,2019,
                 learningmachine:theoryandapplications[J].Neuro   173:303316.
                 computing ,2006,70(1):489501.                [46]›•t, ¿ w, Ÿ’ . '× 3 š,&-1}ò7
            [37]ACHITEM,KATIPO LUOM,JEHANZAIBM,etal.               Ò»Ÿ8Ôë[J]. Ò»ÿBC,2022,39(1):322332.
                 Hydrologicaldroughtpredictionbasedonhybridextreme  [47] TIAN Qing,LU Jianzhong,CHEN Xiaoling.A novel
                 learningmachine :WadiMinaBasincasestudy,Algeria    comprehensiveagriculturaldroughtindexreflectingtime
                 [J].Atmosphere,2023,14(9):1447.                    lagofsoilmoisturetometeorology:acasestudyinthe
            [38]¸”:, ðœX, ¿¨•, 4. ÝÎª&-š                       YangtzeRiverBasin ,China[J].Catena,2022,209:
                 ›ì·0-Ò»â8.ï´[J]. KPá-%&,                          105804.
                 2023,41(2):16.                               [48] CHENGMeilin,ZHONGLei,MAYaoming,etal.A
            [39]› ?, –—ù, ¿ [, 4. Õy)˜D>ÿ™Îš›@                      new droughtmonitoringindexontheTibetanPlateau
                 £ž®STjs9·«BC[J]. ˜œ)Z,2022,51                      basedonmultisourcedataandmachinelearningmethods
                 (1):3239.                                         [J].RemoteSensing,2023,15(2):512.
   218   219   220   221   222   223   224   225   226   227   228