Page 42 - 《水资源与水工程学报》2024年第2期
P. 42

3                        & ' ( ) & * + , -                 2024 $
              8
            « £ æ b (TheUnited NationsDevelopmentPro          ê, Ú;_¦ž2]45“æ、 ¯£8¾4hŽ?
            gramme ,UNDP) OG¦IL«@¯¥(HumanDe                   Ús*+“æ、 LƒHØ, Äk´ç@LƒZaüL
            velopmentIndex,HDI) Íè±ãTɦIL«@2                   ƒ4, 7y0Ëðâ‘ã¦ÿ:fü。
            ø, £Öˆ5m,HDI ¹·È‡ˆ¯¥、 W€¯¥7
            8ï=¯¥¦Ö>ø©²,3 hvj¯¥F9Új。                           ‡–LM:
            -Ê, žyL£®m«0I(¦1W€5cœœc                            [1]SINGHPK,SAXENAS.Towardsdevelopingariverhea
            ¾I(ˑã!"¦“‘5c。=W, š¶•[                               lthindex [J].EcologicalIndicators,2018,85:9991011.
                                                               [2]LUOZengliang,ZUOQiting,SHAOQuanxi.Anewframe
            ./·È‡ˆ¯¥、 W€¯¥üï=¯¥[È}Þ
                                                                  workforassessingriverecosystemhealthwithconsideration
            ¦F9^", Ç®lIL«@¯¥(NHDI) »´|
                                                                  ofhumanservicedemand [J].ScienceoftheTotalEnvi
            JI(ˑãuv!"¦“‘ü&ü5c。
                                                                  ronment ,2018,640:442453.
                 (3) '6¢¦ M-DGM(1,1) ¿ÀMNI€
                                                               [3]GRIZZETTIB,LANZANOVAD,LIQUETEC,etal.As
            ËÅ'¥nŒ、 ¥n*+#¬¦éê。–IEÔq
                                                                  sessingwaterecosystemservicesforwaterresourcemanage
            Éˑãuve¨ÂŽ¦µÞò¿, Å'¥nŒ, Ê                             ment [J].EnvironmentalScience& Policy,2016,61:
            ’@¦·Ž¿ÀœœšN:¡¦Å'¥n$71                                 194203.
            M [33] , µÅ'¥nŒ, ’“·Ž¿À¦’cP7f                      [4]Ó)V, Ì¢d. ÓÔuvË8¦‘ã!"8ýèåZ
            {。ʞ]@0)¦ GM(1,1)、TDGM(1,1)              [29] ·       u[C]// mq2]+© 2008 ª+>ª©}6#, mqO
            Ž¿ÀËðâ‘ãuv!"4궷·Žµ, "È                               õOà,2008:430433.
                                                               [5]Ó)V, ÌÏe. ‘ãuv!"·J2}^œ[M]. F
            ¦·Ž’c™¹s"ç, îö~Ô'6r¢¦
                                                                  |: mq2]23GCD,2022:3946.
            M-DGM(1,1) ¿À。M-DGM(1,1) ¿Àž¥n
                                                               [6]åW], Ó6@, Ó)V, :. ðâ‘ãuv!"fa8
            ·f2hŽ]@‰%(eu¥ m´)ñ(el¥
                                                                  š›[J]. 23´R*+,2016,34(1):3539.
            n*+¦#b%c, ݊#¬*+¦ê—, Ç®¿
                                                               [7]AHMEDAN,OTHMANFB,AFANHA,etal.Machine
            À’c¹s•ç, »×@Ôðâ‘ãuv¦!"4
                                                                  learningmethodsforbetterwaterqualityprediction[J].
            귎。žÕ¶¦‘ãuv!"·Ž./m, •œ                               JournalofHydrology ,2019,578:124084.
            ¨k7ë)0)¦‘be¢B!ebÈ)ñ¦!"                             [8]CHENZeng,XUHuan,JIANGPeng,etal.Atransfer
            ·J/e, c¢‘ãuv!"]Z·Jøã, y0                             learningbasedLSTMstrategyforimputinglargescalecon
            ƒ·J; ®•œ¨, .Cqɑãe¨ÂŽ¦)*¶                             secutivemissingdataanditsapplicationinawaterquality
            ·78‘ãuv!"Å'¥n¦³a#$, Õ¶k                               predictionsystem [J].JournalofHydrology,2021,602:
                                                                  126573.
            ¶•[º¶Ú;·ŽÖü¿À, O&‘ãuv!
                                                               [9]Žno, “gÖ, Ñnø, :. ÓÔ BP `ñab¦"‘ãT
            "4ꦷŽ’c。
                                                                  2…·Ž[J]. 2QR^245+­,2021,32(5):1926.
            5 I N                                              [10]GAOShuai,HUANGYuefei,ZHANGShuo,etal.Short
                                                                   termrunoffpredictionwithGRUandLSTMnetworkswith
                 '6mnðâ‘ãuv!"èšÅ'¥nŒ、
                                                                   outrequiringtimestepoptimizationduringsamplegenera
            ¥n*+#¬šÒ¦†x, ¢B¾ÓÔ#$2}¦                                tion [J].JournalofHydrology,2020,589:125188.
            M-DGM(1,1) ·Ž¿À, ×]@Ñ¿ÀËð①                       [11]GHORBANIMA,ZADEHHA,ISAZADEHM,etal.A
            ãuv 2020—2024 ª¦!"4궷è±。                              comparativestudyofartificialneuralnetwork (MLP,
                 ( 1) žðâ‘ãuv!"·Žm,M-DGM(1,                        RBF)andsupportvectormachinemodelsforriverflow
            1) ¿À¦·Ž’c¹s¾•ç, k7?@Ôð①                             prediction [J].EnvironmentalEarthSciences,2016,75
                                                                   (6):476.
            ãuv!"¦·Ž, ·Žëìk¹ðâ‘ã¦*+
                                                               [12]TIANZhan,YUZiwei,LIYifan,etal.Predictionofriv
            »2OP¤,Ôn。
                                                                   erpollutionundertherainfall-runoffimpactbyartificial
                 (2) ðâ‘ãuvž 2020—2024ª¦!"·
                                                                   neuralnetwork :acasestudyofShiyanRiver,Shenzhen,
            Žè±š²š&¹ 70.04、71.31、71.49、70.24ü
                                                                   China[J].FrontiersinEnvironmentalScience,2022,
            71.30, ©fÔÑ!"4ƒ, èšê%cä, ÓtZ                          10:887446.
            »·öC!"œö«@; _š¦§J%¯R52Q                            [13]…èv, h i, æ w, :. ÓÔº¶¦`ñab^ݵ
            Rä«]@™、 㡈5‰–5c:·Žèšªž                                ö¡/¦äãT‘Úã¡·Ž./[J]. 2QR^24
   37   38   39   40   41   42   43   44   45   46   47