Page 42 - 《水资源与水工程学报》2024年第2期
P. 42
3 & ' ( ) & * + , - 2024 $
8
« £ æ b (TheUnited NationsDevelopmentPro ê, Ú;_¦2]45æ、 ¯£8¾4h?
gramme ,UNDP) OG¦IL«@¯¥(HumanDe Ús*+æ、 LHØ, Äk´ç@LZaüL
velopmentIndex,HDI) Íè±ãTɦIL«@2 4, 7y0Ëðâã¦ÿ:fü。
ø, £Ö5m,HDI ¹·È¯¥、 W¯¥7
8ï=¯¥¦Ö>ø©²,3 hvj¯¥F9Új。 LM:
-Ê, yL£®m«0I(¦1W5cc [1]SINGHPK,SAXENAS.Towardsdevelopingariverhea
¾I(Ëã!"¦5c。=W, ¶[ lthindex [J].EcologicalIndicators,2018,85:9991011.
[2]LUOZengliang,ZUOQiting,SHAOQuanxi.Anewframe
./·È¯¥、 W¯¥üï=¯¥[È}Þ
workforassessingriverecosystemhealthwithconsideration
¦F9^", Ç®lIL«@¯¥(NHDI) »´|
ofhumanservicedemand [J].ScienceoftheTotalEnvi
JI(Ëãuv!"¦ü&ü5c。
ronment ,2018,640:442453.
(3) '6¢¦ M-DGM(1,1) ¿ÀMNI
[3]GRIZZETTIB,LANZANOVAD,LIQUETEC,etal.As
ËÅ'¥n、 ¥n*+#¬¦éê。IEÔq
sessingwaterecosystemservicesforwaterresourcemanage
ÉËãuve¨Â¦µÞò¿, Å'¥n, Ê ment [J].EnvironmentalScience& Policy,2016,61:
@¦·¿ÀN:¡¦Å'¥n$71 194203.
M [33] , µÅ'¥n, ·¿À¦cP7f [4]Ó)V, Ì¢d. ÓÔuvË8¦ã!"8ýèåZ
{。Ê]@0)¦ GM(1,1)、TDGM(1,1) [29] · u[C]// mq2]+© 2008 ª+>ª©}6#, mqO
¿ÀËðâãuv!"4궷·µ, "È õOà,2008:430433.
[5]Ó)V, ÌÏe. ãuv!"·J2}^[M]. F
¦·c¹s"ç, îö~Ô'6r¢¦
|: mq2]23GCD,2022:3946.
M-DGM(1,1) ¿À。M-DGM(1,1) ¿À¥n
[6]åW], Ó6@, Ó)V, :. ðâãuv!"fa8
·f2h]@%(eu¥ m´)ñ(el¥
[J]. 23´R*+,2016,34(1):3539.
n*+¦#b%c, Ý#¬*+¦ê, Ç®¿
[7]AHMEDAN,OTHMANFB,AFANHA,etal.Machine
Àc¹sç, »×@Ôðâãuv¦!"4
learningmethodsforbetterwaterqualityprediction[J].
ê·。Õ¶¦ãuv!"·./m, JournalofHydrology ,2019,578:124084.
¨k7ë)0)¦be¢B!ebÈ)ñ¦!" [8]CHENZeng,XUHuan,JIANGPeng,etal.Atransfer
·J/e, c¢ãuv!"]Z·Jøã, y0 learningbasedLSTMstrategyforimputinglargescalecon
·J; ®¨, .CqÉãe¨Â¦)*¶ secutivemissingdataanditsapplicationinawaterquality
·78ãuv!"Å'¥n¦³a#$, Õ¶k predictionsystem [J].JournalofHydrology,2021,602:
126573.
¶[º¶Ú;·Öü¿À, O&ãuv!
[9]no, gÖ, Ñnø, :. ÓÔ BP `ñab¦"ãT
"4ꦷc。
2
·[J]. 2QR^245+,2021,32(5):1926.
5 I N [10]GAOShuai,HUANGYuefei,ZHANGShuo,etal.Short
termrunoffpredictionwithGRUandLSTMnetworkswith
'6mnðâãuv!"èÅ'¥n、
outrequiringtimestepoptimizationduringsamplegenera
¥n*+#¬Ò¦x, ¢B¾ÓÔ#$2}¦ tion [J].JournalofHydrology,2020,589:125188.
M-DGM(1,1) ·¿À, ×]@Ñ¿ÀËðâ [11]GHORBANIMA,ZADEHHA,ISAZADEHM,etal.A
ãuv 2020—2024 ª¦!"4궷è±。 comparativestudyofartificialneuralnetwork (MLP,
( 1) ðâãuv!"·m,M-DGM(1, RBF)andsupportvectormachinemodelsforriverflow
1) ¿À¦·c¹s¾ç, k7?@Ôðâ prediction [J].EnvironmentalEarthSciences,2016,75
(6):476.
ãuv!"¦·, ·ëìk¹ðâã¦*+
[12]TIANZhan,YUZiwei,LIYifan,etal.Predictionofriv
»2OP¤,Ôn。
erpollutionundertherainfall-runoffimpactbyartificial
(2) ðâãuv 2020—2024ª¦!"·
neuralnetwork :acasestudyofShiyanRiver,Shenzhen,
è±²&¹ 70.04、71.31、71.49、70.24ü
China[J].FrontiersinEnvironmentalScience,2022,
71.30, ©fÔÑ!"4, èê%cä, ÓtZ 10:887446.
»·öC!"ö«@; _¦§J%¯R52Q [13]
èv, h i, æ w, :. ÓÔº¶¦`ñab^ݵ
Rä«]@、 ã¡55c:·èª ö¡/¦äãTÚã¡·./[J]. 2QR^24