Page 31 - 《水资源与水工程学报》2023年第3期
P. 31
! 3# mno, E: pq SWAP rst3uvwxyz{|}~&r 2 7
2
±ó 7.5、7.1mg/cm, ÜÅ%Sa³[)¦#T [13]XIONGLvyang,XUXu,ENGELB,etal.Modelingag
µãäüaGëÉf 0~100cmX*X(B&Gq rohydrologicalprocessesandanalyzingwateruseinasu
Ë, ÀÚGX(!GËÌ÷ztu, Ì&, ³[ perlargeirrigationdistrict (Hetao)ofaridupperYellow
Riverbasin [J].JournalofHydrology,2021,603(Part
)GëÉÅS®K© .,ÍX(Ëè_é
B):127014.
ü{çÖ³[)z\Gb。
[14]PANYanxin,YUANChengfu,JINGSiyuan.Simulation
andoptimizationofirrigationscheduleforsummermaize
yzFG: basedonSWAPmodelinsalineregion [J].International
JournalofAgriculturalandBiologicalEngineering,2020,
[1]Úé, ݵÏ, X û, E. 9.Ƥ'z+bTa
13(3):117-122.
X(NËn½«¹[J]. TµðN8-,2022,
[15]WANGXiaowen,CAIHuanjie,LILiang,etal.Estima
41(9):101-109.
tingsoilwatercontentandevapotranspirationofwinter
[2]HOSSEYNI-MOGHADDAM M S,SAFAIEN,SOLTANI
wheatunderdeficitirrigationbasedonSWAPmodel [J].
J ,etal.Desertadaptedfungalendophytesinducesalinity
Sustainability ,2020,12(22):9451.
anddroughtstressresistanceinmodelcrops[J].Plant
[16]ZHAOYin,MAOXiaomin,SHUKLAM K.Amodified
PhysiologyandBiochemistry ,2021,160:225-238.
SWAPmodelforsoilwaterandheatdynamicsandseed
[3]}t¿, ú, C, E. TNRÆüNdI`J
maizegrowthunderfilm mulching [J].Agriculturaland
ÆaX(N˹zÇÈ[J]. æ!
8-,2020,51
ForestMeteorology,2020,292-293:108127.
(4):268-278.
[17]SHAFIEIM,GHAHRAMANB,SAGHAFIANB,etal.
[4]}t¿, Ãs, ôÎ5, E. fgÛ+bTaNË0
UncertaintyassessmentoftheagrohydrologicalSWAP
WË÷Mq%S©e[J]. TµðN8-,2020,39
modelapplicationatfieldscale:acasestudyinadryre
(8):1-17.
gion[J].AgriculturalWaterManagement,2014,146:
[5]ôY, O, ú½7, E. fgÛ+bTa2*Æü
324-334.
N÷8¬rTµ¯°1[J]. ¦ÆQ,2022,36
[18]JIANGJing,FENGShaoyuan,MAJuanjuan,etal.Irri
(2):418-426.
gationmanagementforspringmaizegrownonsalinesoil
[6]ÿ|Ý, 8 5, ]v. +bTaãTð¤¥æ'Ï
basedonSWAPmodel [J].FieldCropResearch,2016,
N!¾%S[J]. æZ[8-,2019,35(1):98-105.
196:85-97.
[7]ô, ë(, }t¿, E. 9.¢© Kriging zX(Ë
[19] 5|, %¥, . , E.SWAP hhi9=ðNã
÷tuWÆüNgj[J]. æ!
8-,2021,
äüX(NË0F[J]. TµðN8-,2020,39(8):
52(8):297-306.
93-101.
[8]Ý, ô, }t¿, E. 9.lz7N/5ü+
[20]È Ä, ö, Dà, E. +bTa³[)Ï!ù
bTaX(Ë÷[J]. æ!
8-,2022,
÷«ÒR¿P¯°ù´&%S[J]. ´æ8
53(12):366-379.
-,2022,50(4):67-73.
[9]÷, %¥, ð ç, E. +bTaãaçfç*
[21]qY, vÄ1, h==?, E. ù©NhË
X(Ë«n%S[J]. TµðN8-,2020,39
÷æ'³[)GbPRzÇÈ[J]. 7NTµ,2021
(8):26-34.
(7):36-40+45.
[10]XUEJingyuan,HUOZailin,WANGShuai,etal.Ano
[22]ô{, ô ±, Ú ©, E. fgÛ+bTaX(1Qn
velregionalirrigationwaterproductivitymodelcouplingir
½1———]Tb©ÖTb¡&[J].
rigationanddrainagedrivensoilhydrologyandsalinitydy
NQRWNZ[8-,2021,32(6):215-221.
namicsandshallowgroundwatermovementinaridregions
[23]B¾Ò, %¥, 5|, E. fgÛ+bTaãç、
inChina[J].HydrologyandEarthSystem Sciences,
BÆNË^[J]. `JÆaæ%S,2022,40
2020,24(5):2399-2418.
(1):76-85.
[11]]#, vP, î"ÿ, E. 9. AHChzz
[24]LIUSheng,HUANGQuanzhong,RENDongyang,etal.
jGüÅTTNR÷[J]. ÊÒG^8-,2020,31
Soilevaporationanditsimpactonsaltaccumulationindif
(2):483-492.
ferentlandscapesunderfreeze-thawconditionsinanarid
[12]LIUMinghuan,XUXu,JIANGYao,etal.Responsesof
seasonalfrozenregion [J].VadoseZoneJournal,2021,
cropgrowthandwaterproductivitytoclimatechangeand
20(2):e20098.
agriculturalwatersavinginaridregion[J].Scienceofthe
( DEF 36 G)
TotalEnvironment,2020,703:134621.